Số hạng x5 trong kt : ( \(\dfrac{X^2}{2}\)- \(\dfrac{1}{x}\))7
Tìm số hạng chứa x5 trong khai triển \(\left(x-\dfrac{2}{x}\right)^{n^{ }}\) , biết n là số tự nhiên thỏa mãn \(C^3_n=\dfrac{4}{3}n+2C^2_n\)
A.144 B.134 C.115 D.141
1/ Giải phương trình sau:
\(tan^2\left(x+\dfrac{\pi}{3}\right)+\left(\sqrt{3}-1\right)tan\left(x+\dfrac{\pi}{3}\right)-\sqrt{3}=0\)
2/ Tìm hệ số của số hạng chứa \(x^{26}\) trong khai triển \(\left(\dfrac{1}{x^4}+x^7\right)^n\) . Biết \(C^2_{n+2}-4C^n_{n+1}=2\left(n+1\right)\) (n ∈ N* ; x > 0)
Câu 2:
\(\Leftrightarrow\dfrac{\left(n+2\right)!}{2!\cdot n!}-4\cdot\dfrac{\left(n+1\right)!}{n!\cdot1!}=2\left(n+1\right)\)
\(\Leftrightarrow\dfrac{\left(n+1\right)\left(n+2\right)}{2}-4\cdot\dfrac{n+1}{1}=2\left(n+1\right)\)
\(\Leftrightarrow\left(n+1\right)\left(n+2\right)-8\left(n+1\right)=4\left(n+1\right)\)
=>(n+1)(n+2-8-4)=0
=>n=-1(loại) hoặc n=10
=>\(A=\left(\dfrac{1}{x^4}+x^7\right)^{10}\)
SHTQ là: \(C^k_{10}\cdot\left(\dfrac{1}{x^4}\right)^{10-k}\cdot x^{7k}=C^k_{10}\cdot1\cdot x^{11k-40}\)
Số hạng chứa x^26 tương ứng với 11k-40=26
=>k=6
=>Số hạng cần tìm là: \(210x^{26}\)
xác định số hạng chứa x4 trong\(\left(2x^2-\dfrac{1}{x^3}\right)^7\)
Số hạng tổng quát: \(C_n^k.a^k.b^{n-k}\)
+ Có : - a là: 2x2 ; b là : \(-\dfrac{1}{x^3}\); n là: 7.
Thay vào số hạng tổng quát rồi rút gọn ta đc:
\(C_7^k.\left(-1\right)^{7-k}.2.x^{5k-21}\) theo đề bài số hạng chứa x^4 => 5k-21=4 => k= 5.
Vậy số hạng tổng quát là: \(C^5_7.2\)
Cho các đa thức : P(x) = x5 - 3x2 + 7x4 - 9x3 + x2 - \(\dfrac{1}{4}\)x ; Q(x) = 5x4 - x5 + x2 - 2x3 + 3x2 - \(\dfrac{1}{4}\)
a ) sắp xếp hạng tử của mỗi đa thức trên theo lũy thừa giảm của biến
b ) Tính P(x) + Q(x)
a) \(\dfrac{x+1}{35}\)+\(\dfrac{x+3}{33}\)=\(\dfrac{x+5}{31}\)+\(\dfrac{x+7}{29}\)Hd: cộng thêm 1 vào các hạng tửb) \(\dfrac{x-10}{1994}\)+\(\dfrac{x-8}{1996}\)+\(\dfrac{x-6}{1998}\)+\(\dfrac{x-4}{2000}\)+\(\dfrac{x-2}{2002}\)=\(\dfrac{x-2002}{2}\)+\(\dfrac{x-2000}{4}\)+\(\dfrac{x-1998}{6}\)+\(\dfrac{x-1996}{8}\)+\(\dfrac{x-1994}{10}\)Hd: trừ đi 1 vào các hạng tử
c) \(\dfrac{x-1991}{9}\)+\(\dfrac{x-1993}{7}\)+\(\dfrac{x-1995}{5}\)+\(\dfrac{x-1997}{3}\)+\(\dfrac{x-1999}{1}\)=\(\dfrac{x-9}{1991}\)+\(\dfrac{x-7}{1993}\)+\(\dfrac{x-5}{1995}\)+\(\dfrac{x-3}{1997}\)+\(\dfrac{x-1}{1999}\)Hd: trừ đi 1 vào các hạng tửd) \(\dfrac{x-8}{15}\)+\(\dfrac{x-74}{13}\)+\(\dfrac{x-67}{11}\)+\(\dfrac{x-64}{9}\)=10Chú ý: 10=1+2+3+4e) \(\dfrac{x-1}{13}\)-\(\dfrac{2x-13}{15}\)=\(\dfrac{3x-15}{27}\)-\(\dfrac{4x-27}{29}\)Hd: thêm hoặc bớt 1 vào các hạng tử
1. Tìm hệ số của số hạng \(x^4\) trong khai triển \(\left(x-3\right)^9\)
2. Tìm hệ số của số hạng chứa \(x^{12}y^{13}\) trong khai triển \(\left(2x+3y\right)^{25}\)
3. Tìm hệ số của số hạng chứa \(x^4\) trong khai triển \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}\)
4. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x}\right)^6\)
5. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x+\dfrac{1}{x^4}\right)^{10}\)
Biết tổng các hệ số của ba số hạng đầu trong khai triển \(\left(x^3+\dfrac{1}{x^2}\right)^n\) bằng 11. Tìm hệ số của \(x^7\) trong khai triển đó.
\(C_n^0+C_n^1+C_n^2=11\)
\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)
\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)
\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)
\(5k-8=7\Rightarrow k=3\)
Hệ số: \(C_4^3=4\)
Phân tích các tử thức và các mẫu thức (nếu cần thì dùng phương pháp thêm và bớt cùng một số hạng hoặc tách một số hạng thành hai số hạng ) rồi rút gọn biểu thức :
a) \(\dfrac{x-2}{x+1}.\dfrac{x^2-2x-3}{x^2-5x+6}\)
b) \(\dfrac{x+1}{x^2-2x-8}.\dfrac{4-x}{x^2+x}\)
c) \(\dfrac{x+2}{4x+24}.\dfrac{x^2-36}{x^2+x-2}\)
Cho các biểu thức sau:
\(ab - \pi {r^2}\); \(\dfrac{{4\pi {r^3}}}{3}\); \(\dfrac{p}{{2\pi }}\); \(x - \dfrac{1}{y}\); \(0\); \(\dfrac{1}{{\sqrt 2 }}\); \({x^3} - x + 1\).
Trong các biểu thức trên, hãy chỉ ra:
a) Các đơn thức;
b) Các đa thức và số hạng tử của chúng
a) Các đơn thức là:
\(\dfrac{4\pi r^3}{3};\dfrac{p}{2\pi};0;\dfrac{1}{\sqrt{2}}\)
b) Các đa thức và hạng tử là:
- \(ab-\pi r^2\)
Hạng tử: \(ab,-\pi r^2\)
- \(x-\dfrac{1}{y}\)
Hạng tử: \(x,-\dfrac{1}{y}\)
- \(x^3-x+1\)
Hạng tử: \(x^3,-x,1\)