Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hán thanh thanh
Xem chi tiết
Nguyễn Hoàng Anh Phong
25 tháng 2 2019 lúc 17:12

\(\frac{x+5}{95}+\frac{x+3}{97}+\frac{x+1}{99}=\frac{x+15}{85}+\frac{x+20}{80}+\frac{x+25}{75}.\)

\(\frac{x+5}{95}+1+\frac{x+3}{97}+1+\frac{x+1}{99}+1-\frac{x+15}{85}-1-\frac{x+20}{80}-1-\frac{x+25}{75}-1=0\)

\(\frac{x+100}{95}+\frac{x+100}{97}+\frac{x+100}{99}-\frac{x+100}{85}-\frac{x+100}{80}-\frac{x+100}{75}=0\)

\(\left(x+100\right).\left(\frac{1}{95}+\frac{1}{97}+\frac{1}{99}-\frac{1}{85}-\frac{1}{80}-\frac{1}{75}\right)=0\)

\(\Rightarrow x+100=0\Rightarrow x=-100\)

\(\frac{1}{95}+\frac{1}{97}+\frac{1}{99}-\frac{1}{85}-\frac{1}{80}-\frac{1}{75}\ne0\)

trần phương thảo
Xem chi tiết
Hoàng Xuân Trung Anh
Xem chi tiết
lê thị thu huyền
4 tháng 5 2017 lúc 16:49

1/a/\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-6\end{cases}}}\)

Vậy ...................

b/ ĐKXĐ:\(x\ne2;x\ne5\)

.....\(\Rightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x^2-10x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(nhận\right)\\x=5\left(loại\right)\end{cases}}}\)

Vậy ..............

Yen Nhi
24 tháng 2 2022 lúc 20:04

`Answer:`

`1.`

a. \(\left(x+5\right)\left(2x+1\right)-x^2+25=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x^2-25\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1-x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-5\end{cases}}}\)

b. \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\left(ĐKXĐ:x\ne2;x\ne5\right)\)

\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow\frac{3x\left(x-5\right)-x\left(x-2\right)+3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)+3x=0\)

\(\Leftrightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\text{(Không thoả mãn)}\end{cases}}}\)

`2.`

\(ĐKXĐ:x\ne-m-2;x\ne m-2\)

Ta có: \(\frac{x+1}{x+2+m}=\frac{x+1}{x+2-m}\left(1\right)\)

a. Khi `m=-3` phương trình `(1)` sẽ trở thành: \(\frac{x+1}{x-1}=\frac{x+1}{x+5}\left(x\ne1;x\ne-5\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\frac{1}{x-1}=\frac{1}{x+5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=x+5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\-1=5\text{(Vô nghiệm)}\end{cases}}}\)

b. Để phương trình `(1)` nhận `x=3` làm nghiệm thì

\(\Leftrightarrow\hept{\begin{cases}\frac{3+1}{3+2-m}=\frac{3+1}{3+2-m}\\3\ne-m-2\\3\ne m-2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{5+m}=\frac{4}{5-m}\\m\ne\pm5\end{cases}}\Leftrightarrow\hept{\begin{cases}5+m=5-m\\m\ne\pm5\end{cases}}\Leftrightarrow m=0\)

Khách vãng lai đã xóa
Quỳnh Anh
Xem chi tiết
Hồng Phúc
15 tháng 12 2020 lúc 20:32

Đặt \(x+\dfrac{1}{x}=a;y+\dfrac{1}{y}=b\left(\left|a\right|\ge2;\left|b\right|\ge2\right)\)

\(\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x^3+\dfrac{1}{x^3}\right)+\left(y^3+\dfrac{1}{y^3}\right)=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3-3\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)^3-3\left(y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3-3\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\a^3+b^3=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\\left(a+b\right)^3-3ab\left(a+b\right)=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\125-15ab=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\ab=9-m\end{matrix}\right.\)

\(\Rightarrow a,b\) là nghiệm của phương trình \(t^2-5t+9-m=0\left(1\right)\)

a, Nếu \(m=3\), phương trình \(\left(1\right)\) trở thành

\(t^2-5t+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y+\dfrac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y^2-3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3\pm\sqrt{5}}{2}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=3\\y+\dfrac{1}{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3\pm\sqrt{5}}{2}\\y=1\end{matrix}\right.\)

Vậy ...

b, \(\left(1\right)\Leftrightarrow t=\dfrac{5\pm\sqrt{4m-11}}{2}\left(m\ge\dfrac{11}{4}\right)\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5\pm\sqrt{4m-11}}{2}\\b=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{5\pm\sqrt{4m-11}}{2}\\y+\dfrac{1}{y}=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-\left(5\pm\sqrt{4m-11}\right)+2=0\left(2\right)\\2y^2-\left(5\mp\sqrt{4m-11}\right)+2=0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(2\right)\) có nghiệm dương

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(5\pm\sqrt{4m-11}\right)^2-16\ge0\\\dfrac{5\pm\sqrt{4m-11}}{2}>0\\1>0\end{matrix}\right.\)

\(\Leftrightarrow...\)

kietdeptrai
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2023 lúc 0:02

a: \(\Leftrightarrow2\cdot5\sqrt{x-3}-\dfrac{1}{2}\cdot2\sqrt{x-3}+\dfrac{1}{7}\cdot7\sqrt{x-3}=20\)

=>\(10\cdot\sqrt{x-3}=20\)

=>\(\sqrt{x-3}=2\)

=>x-3=4

=>x=7

b: =>|x-3|=2

=>x-3=2 hoặc x-3=-2

=>x=5 hoặcx=1

Nguyễn Duy Khang
Xem chi tiết
hnamyuh
23 tháng 2 2023 lúc 22:24

Nguyễn Lê Phước Thịnh
23 tháng 2 2023 lúc 22:20

a: =>(2x-5x-1)(2x+5x+1)=0

=>(-3x-1)(7x+1)=0

=>x=-1/3 hoặc x=-1/7

b: =>(5x-5)^2-(x+2)^2=0

=>(5x-5-x-2)(5x-5+x+2)=0

=>(4x-7)(6x-3)=0

=>x=1/2 hoặc x=7/4

c: =>(x^2+4x-1-x^2+3x-2)(x^2+4x-1+x^2-3x+2)=0

=>(7x-3)(2x^2+x+1)=0

=>7x-3=0

=>x=3/7

anh minh
Xem chi tiết
Nguyễn Khánh Ngọc
Xem chi tiết
ひまわり(In my personal...
3 tháng 2 2021 lúc 14:00

\(\dfrac{x-130}{20}\)+\(\dfrac{x-100}{25}\)+\(\dfrac{x-60}{30}\)+\(\dfrac{x-10}{35}\)=10

\(\dfrac{2625\left(x-130\right)}{52500}\)+\(\dfrac{2100\left(x-100\right)}{52500}\)+\(\dfrac{1750\left(x-60\right)}{52500}\)+\(\dfrac{1500\left(x-10\right)}{52500}\)=\(\dfrac{525000}{52500}\)

⇔2625\(x\)-341250+2100\(x\)-210000+1750\(x\)-105000+1500\(x\)-15000=525000

⇔ 7975\(x\) = 1196250

⇔ \(x\) = \(\dfrac{1196250}{7975}\)

\(x \) = 150

 

Ngô Linh
Xem chi tiết
Khánh An Ngô
Xem chi tiết
HT.Phong (9A5)
24 tháng 9 2023 lúc 10:10

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)