Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tấn Phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 1 2023 lúc 22:41

-1<=sinx<=1

=>-4<4sinx<=4

=>-7<=4sinx-3<=1

=>Min là -7

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 5 2019 lúc 16:19

07 - DQDinh
Xem chi tiết
Nguyễn Quốc Việt
Xem chi tiết
Ngô Thành Chung
30 tháng 8 2021 lúc 20:05

y = (2sin2x)2 - cos4x

y = (1 - cos2x)2 - (2cos22x - 1)

y = cos22x - 2cos2x + 1 - 2cos22x + 1

y = - cos22x - 2cos2x + 1

Đặt cos2x = t ⇒ \(-1\le t\le1\)

Ta được hàm số mới : f(t) = - t2 - 2t + 1

f(t) nghịch biến trên \([-1;+\infty)\) nên f(t) nghịch biến trên \(\left[-1;1\right]\)

⇒ ymin = f(1) = - 1 - 2 + 1 = - 2

(Hàm số nghịch biến trên [a ; b] tức là a càng tăng (càng tiến dần về b) thì hàm số càng giảm giá trị nên ymin = f(b)) 

Dấu bằng xảy ra ⇔ t = 1 ⇔ cos2x = 1 

⇔ cosx = 0 ⇔ \(x=\dfrac{\pi}{2}+k\pi\)

Pánh Pao Chay
Xem chi tiết
Hồng Phúc
2 tháng 8 2021 lúc 13:47

Đặt \(sin^24x=t\left(t\in\left[0;1\right]\right)\)

\(y=1-8sin^22x.cos^22x+2sin^42x\)

\(=1-2sin^24x+2sin^42x\)

\(\Rightarrow y=f\left(t\right)=1-2t+2t^2\)

\(y_{min}=min\left\{f\left(0\right);f\left(1\right);f\left(\dfrac{1}{2}\right)\right\}=\dfrac{1}{2}\)

\(y_{max}=max\left\{f\left(0\right);f\left(1\right);f\left(\dfrac{1}{2}\right)\right\}=1\)

Sách Giáo Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2022 lúc 23:38

Tham khảo:

vvvvvvvv
Xem chi tiết
loveyoongi03
Xem chi tiết
Ngô Thành Chung
1 tháng 9 2021 lúc 11:33

y = \(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\)

y = \(\dfrac{sin^2x}{sinx.cosx-cos^2x}+\dfrac{1}{4}=\dfrac{\dfrac{sin^2x}{cos^2x}}{\dfrac{sinx.cosx}{cos^2x}-1}+\dfrac{1}{4}\)

y = \(\dfrac{tan^2x}{tanx-1}+\dfrac{1}{4}\)

y = \(\dfrac{4tan^2x+tanx-1}{4tanx-4}\). Đặt t =  tanx. Do x ∈ \(\left(\dfrac{\pi}{4};\dfrac{\pi}{2}\right)\) nên t ∈ (1 ; +\(\infty\))\

Ta đươc hàm số f(t) = \(\dfrac{4t^2+t-1}{4t-4}\)

⇒ ymin = \(\dfrac{17}{4}\) khi t = 2. hay x = arctan(2) + kπ 

Đinh Văn Nam
Xem chi tiết
écc éc
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 9 2021 lúc 20:25

\(-1\le sin\left(x^2\right)\le1\Rightarrow\)\(0\le\sqrt{1-sin\left(x^2\right)}\le\sqrt{2}\Rightarrow-1\le y\le\sqrt{2}-1\)

\(y_{min}=-1\) khi \(sin\left(x^2\right)=1\Rightarrow x=\pm\sqrt{\dfrac{\pi}{2}+k2\pi}\) (\(k\in N\))

\(y_{max}=\sqrt{2}-1\) khi \(sin\left(x^2\right)=-1\Rightarrow x=\pm\sqrt{-\dfrac{\pi}{2}+k2\pi}\) (\(k\in Z^+\))