Phương trình tiếp tuyến của Parabol y = 3 x 2 + x + 2 tại điểm M 1 ; 0 là:
A. y = − 5 x + 5
B. y = 5 x − 5
C. y = − 5 x − 5
D. y = 5 x − 4
Viết phương trình tiếp tuyến của parabol \(\left( P \right):y = - 2{x^2}\) tại điểm có hoành độ \({x_0} = - 1\)
Ta có:
\(y'=\left(-2x^2\right)'=-4x\Rightarrow y'\left(-1\right)=-4\cdot\left(-1\right)=4\)
\(y_0=-2\cdot\left(-1\right)^2=-2\)
Phương trình tiếp tuyến là: \(y=4\left(x+1\right)-2=4x+2\)
Cho hàm số \(y=\left(2-x\right)^2x^2\) có đồ thị (C)
a. Viết phương trình tiếp tuyến tại giao điểm (C) với Parabol \(y=x^2\)
b. Viết phương trình tiếp tuyến của (C), biết tiếp tuyến đi qua điểm A(2;0)
Ta có \(y=x^4-4x^3+4x^2\Rightarrow4x^3-12x^2+8x\)
a. PTHD giao điểm của (C) và Parabol \(y=x^2\) :
\(x^4-4x^3+4x^2=x^2\Leftrightarrow x^2\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x=0;x=1;x=3\)
* \(x=0\) ta có phương trình tiếp tuyến là \(y=0\)
* \(x=2\) ta có phương trình tiếp tuyến là \(y=1\)
* \(x=3\) ta có phương trình tiếp tuyến là \(y=24x-63\)
b. Gọi d là đường thẳng đi qua A, có hệ số góc k \(\Rightarrow d:y=k\left(x-2\right)\)
d là tiếp tuyến \(\Leftrightarrow\begin{cases}\left(2-x\right)^2x^2-k\left(x-2\right)\\4x\left(x-2\right)\left(x-1\right)=k\end{cases}\) có nghiệm
Thay k vào phương trình thứ nhất ta có :
\(x^4-4x^3+4x^2=\left(x-2\right)\left(4x^3-12x^2+8x\right)\)
\(\Leftrightarrow x\left(3x-4\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow x=0;x=2;x=\frac{4}{3}\)
* \(x=0\Rightarrow k=0\Rightarrow\) Phương trình tiếp tuyến \(y=0\)
* \(x=2\Rightarrow k=0\Rightarrow\) Phương trình tiếp tuyến \(y=0\)
* \(x=\frac{4}{3}\Rightarrow k=-\frac{32}{27}\Rightarrow\) Phương trình tiếp tuyến \(y=-\frac{32}{27}x+\frac{64}{27}\)
Viết phương trình tiếp tuyến của:
a) Hypebol y = x + 1 x - 1 tại điểm A 2 ; 3 .
b) Đường cong y = x 3 + 4 x 2 – 1 tại điểm có hoành độ x 0 = - 1 .
c) Của parabol y = x 2 – 4 x + 4 tại điểm có tung độ y 0 = 1 .
Viết phương trình tiếp tuyến của parabol \(y = - {x^2} + 4x,\) biết:
a) Tiếp điểm có hoành độ \({x_0} = 1;\)
b) Tiếp điểm có tung độ \({y_0} = 0.\)
Với \({x_0}\) bất kì, ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - {x^2} + 4x + x_0^2 - 4{x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - \left( {{x^2} - x_0^2} \right) + 4\left( {x - {x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( { - x - {x_0} + 4} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \left( { - x - {x_0} + 4} \right) = - 2{x_0} + 4\)
Vậy hàm số \(y = - {x^2} + 4x\) có đạo hàm là hàm số \(y' = - 2x + 4\)
a) Ta có \(y'\left( 1 \right) = - 2.1 + 4 = 2\)
Ngoài ra , \(f\left( 1 \right) = 3\) nên phương trình tiếp tuyến cần tìm là:
\(y - 3 = 2\left( {x - 1} \right)\) hay \(y = 2x + 1\)
b) Ta có \({y_0} = 0\) nên \( - x_0^2 + 4{x_0} = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\{x_0} = 4\end{array} \right.\)
+) \({x_0} = 0,{y_0} = 0\) nên \(y'\left( 0 \right) = 4\) do đó phương trình tiếp tuyến cần tìm là \(y = 4x\)
+) \({x_0} = 4,{y_0} = 0\) nên \(y'\left( 4 \right) = - 4\) do đó phương trình tiếp tuyến cần tìm là
\(y = - 4\left( {x - 4} \right)\) hay \(y = - 4x + 16\)
viết phương trình tiếp tuyến
1) y = - \(\dfrac{x^4}{2}\) - x\(^2\) + 2 tại điểm M (0;2)
2) y = \(\dfrac{x+2}{x+1}\)tại điểm (2;\(\dfrac{4}{3}\))
1) \(y'=-2x^3-2x\)
Với x=0, ta có: \(y'\left(0\right)=0\)
⇒ Phương trình tiếp tuyến tại điểm M(0;2) là: y=0(x-0)+2=2
2) \(y'=-\dfrac{1}{\left(x+1\right)^2}\)
Với x=2, \(y'\left(2\right)=-\dfrac{1}{\left(2+1\right)^2}=-\dfrac{1}{9}\)
⇒ Phương trình tiếp tuyến tại điểm (2;\(\dfrac{4}{3}\)) là: \(y=-\dfrac{1}{9}\left(x-2\right)+\dfrac{4}{3}=-\dfrac{1}{9}x+\dfrac{14}{9}\)
Viết phương trình tiếp tuyến của đồ thị (C):y=-1/3x^3+2x^2-1 tại điểm M có x=-2
\(y'=-x^2+4x\)
\(y'\left(-2\right)=-4-8=-12\)
\(y\left(-2\right)=\dfrac{29}{3}\)
Phương trình tiếp tuyến:
\(y=-12\left(x+2\right)+\dfrac{29}{3}\Leftrightarrow y=-12x-\dfrac{43}{3}\)
Cho đồ thị C có phương trình y= 2x+2/x-1.viết phương trình tiếp tuyến của C a) tại tiếp điểm M(2;4) b)tại giao điểm của C với d có phương trình y= 2x-1
\(y=\dfrac{2x+2}{x-1}\Rightarrow y'=\dfrac{-4}{\left(x-1\right)^2}\)
a. \(y'\left(2\right)=-4\)
Phương trình tiếp tuyến: \(y=-4\left(x-2\right)+4\Leftrightarrow y=-4x+12\)
b. Pt hoành độ giao điểm:
\(\dfrac{2x+2}{x-1}=2x-1\Leftrightarrow2x^2-5x-1=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{33}}{4}\\x=\dfrac{5+\sqrt{33}}{4}\end{matrix}\right.\)
\(y'\left(\dfrac{5-\sqrt{33}}{4}\right)=-\dfrac{17+\sqrt{33}}{8}\) ; \(y'\left(\dfrac{5+\sqrt{33}}{4}\right)=\dfrac{-17+\sqrt{33}}{8}\)
\(y\left(\dfrac{5-\sqrt{33}}{4}\right)=\dfrac{3-\sqrt{33}}{2}\) ; \(y\left(\dfrac{5+\sqrt{33}}{4}\right)=\dfrac{3+\sqrt{33}}{2}\)
Có 2 tiếp tuyến thỏa mãn:
\(\left[{}\begin{matrix}y=\dfrac{-17-\sqrt{33}}{8}\left(x-\dfrac{5-\sqrt{33}}{4}\right)+\dfrac{3-\sqrt{33}}{2}\\y=\dfrac{-17+\sqrt{33}}{8}\left(x-\dfrac{5+\sqrt{33}}{4}\right)+\dfrac{3+\sqrt{33}}{2}\end{matrix}\right.\)
Đề bài cho số liệu thật kì quặc
Cho đường tròn (C): (x-1)2 + (y+2)2=5 và M (3;-1)
a. Viết phương trình tiếp tuyến của (C) tại M
b.Viết phương trình tiếp tuyến của (C) biết tiếp tuyến vuông góc với đường thẳng: x+2y-1=0
a, Phương trình tiếp tuyến đi qua M: \(ax+by-3a+b=0\left(\Delta\right)\)
Đường tròn đã cho có tâm \(I=\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)
Ta có: \(d\left(I;\Delta\right)=\dfrac{\left|a-2b-3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{5}\)
\(\Leftrightarrow\left(2a+b\right)^2=5\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a-2b\right)^2=0\)
\(\Leftrightarrow a=2b\)
\(\Rightarrow\Delta:2x+y-5=0\)
b, Phương trình tiếp tuyến: \(\left(d\right)2x-y+m=0\left(m\in R\right)\)
Ta có: \(d\left(I;d\right)=\dfrac{\left|2.1-1.\left(-2\right)+m\right|}{\sqrt{5}}=\sqrt{5}\)
\(\Leftrightarrow\left|m+4\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}d:2x-y+1=0\\d:2x-y-9=0\end{matrix}\right.\)
1 vẽ đồ thị hàm số y= x²/2 (P) 2 bằng phép tính hãy xác định toạ độ các giáo điểm parabol (P) với đưownhf thẳng (d) có phương trình y=-1/2 x+1 3 với các giá trị nào của m thì đường thẳng (d) y=X+m a cắt parabol (P) b tiếp xúc với parabol c không cắt parabol