Bài 31. Định nghĩa và ý nghĩa của đạo hàm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Viết phương trình tiếp tuyến của parabol \(y =  - {x^2} + 4x,\) biết:

a) Tiếp điểm có hoành độ \({x_0} = 1;\)

b) Tiếp điểm có tung độ \({y_0} = 0.\)

Hà Quang Minh
22 tháng 9 2023 lúc 21:05

Với \({x_0}\) bất kì, ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - {x^2} + 4x + x_0^2 - 4{x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - \left( {{x^2} - x_0^2} \right) + 4\left( {x - {x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( { - x - {x_0} + 4} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \left( { - x - {x_0} + 4} \right) =  - 2{x_0} + 4\)

Vậy hàm số \(y =  - {x^2} + 4x\) có đạo hàm là hàm số \(y' =  - 2x + 4\)

a) Ta có \(y'\left( 1 \right) =  - 2.1 + 4 = 2\)

Ngoài ra , \(f\left( 1 \right) = 3\) nên phương trình tiếp tuyến cần tìm là:

\(y - 3 = 2\left( {x - 1} \right)\) hay \(y = 2x + 1\)

b) Ta có \({y_0} = 0\) nên \( - x_0^2 + 4{x_0} = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\{x_0} = 4\end{array} \right.\)

+) \({x_0} = 0,{y_0} = 0\) nên \(y'\left( 0 \right) = 4\) do đó phương trình tiếp tuyến cần tìm là \(y = 4x\)

+) \({x_0} = 4,{y_0} = 0\) nên \(y'\left( 4 \right) =  - 4\) do đó phương trình tiếp tuyến cần tìm là

\(y =  - 4\left( {x - 4} \right)\) hay \(y =  - 4x + 16\)


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết