Cho đồ thị hàm số y = x 3 và đường tròn C : x 2 + y 2 = 2. Tính diện tích hình phẳng được tô đậm trên hình?
A. π − 1 2 .
B. π − 1 4 .
C. π + 1 2 .
D. π + 1 4 .
Bài 2: Cho hàm số y = - x + 3 có đồ thị (d) a) Vẽ (d) b) Tính góc tạo bởi đường thẳng y = - x + 3 với trục hoành c) Xác định hàm số y = ax+b biết đồ thị của nó song song với đường thẳng (d) và qua điểm (4;2)
Bài 3: Cho tam giác ABC nội tiếp đường tròn (O;R) đường kính BC. Gọi H là trung điểm của AC. Tia OH cắt đường tròn (O) tại điểm M. Từ A vẽ tia tiếp tuyến Ax với đường tròn (O) cắt tia OM tại N a/ Chứng minh : OM // AB b/ Chứng minh: CN là tiếp tuyến của đường tròn (O) c) Giả sử góc B có số đo bằng 600 . Tính diện tích của tam giác ANC.
Bài 2:
c: Vì (d')//(d) nên a=-1
Vậy: (d'): y=-x+b
Thay x=4 và y=2 vào (d'), ta được:
b-4=2
hay b=6
Cho hàm số \(y=\dfrac{1}{2}x^4-x^2+m\)(m là tham số ) có đồ thị (Cm), đường tròn (S)có phương trình \(x^2+y^2+2x+6y+1=0\) và điểm A(-1;-6).Tìm m để tồn tại tiếp tuyến với đồ thị (Cm) cắt đường tròn (S) tại hai điểm phân biệt B,C sao cho tam giác ABC có chu vi đạt giá trị lớn nhất
Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)
Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn
Ta cần tìm B, C sao cho chi vi ABC lớn nhất
Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)
\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)
Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\)
Dấu "=" xảy ra khi tam giác ABC đều
\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)
Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)
\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)
Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)
\(\Rightarrow m=-1\)
Cho hàm số \(y=f\left(x\right)=\dfrac{x-2}{x+1}\) có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến cắt 2 đường thẳng d1:x=-1 và d2:y=1 lần lượt tại A, B sao cho bán kính đường tròn nội tiếp tam giác IAB là lớn nhất.
Bài 1 a) Khảo sát và vẽ đồ thị hàm số y=x³-2x²+x (C) b) từ đồ thị (C) suy ra đồ thị các hàm số sau: y=|x³-2x²+x|, y=|x|³ -2x²+|x| Bài 2: Khảo sát và vẽ đồ thị hàm số y=x⁴-2x²-3 (C). Từ đồ thị (C) suy ra đồ thị hàm số y=|y=x⁴-2x²-3|
giúp mk câu này vs ạ
Cho hàm số y = x có đồ thị là đường thẳng (d1).
hàm số y = - x + 3 có đồ thị là đường thẳng (d2).
và hàm số y = m x + 2 có đồ thị là đường thẳng (d3).
a) Vẽ (d1) và (d2) trên cùng mặt phẳng tọa độ Oxy.
b) Gọi giao điểm của (d1) và (d2) là A, giao điểm của (d2) và trục Ox là B. Tính diện tích tam giác AOB .
c) Xác định điểm D thuộc đường thẳng (d1) và E thuộc (d2) sao cho hoành độ của chúng đều bằng 3.
d) Tìm m để (d3) song song với (d1).
e) Tìm m để ba đường thẳng đồng qui.
f) Chứng minh rằng (d3) luôn đi qua một điểm cố định với mọi m.
g) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d3) bằng 1
h) Tìm m để đường thẳng (d3) cắt (d2) tại điểm nằm ở góc phần tư thứ III.
d: Để hai đường thẳng song song thì m=1
Trong mặt phẳng tọa độ Oxy Cho hàm số y = 2 x - 3 có đồ thị là đường thẳng d1 và hàm số y = 1/2 x có đồ thị là đường thẳng d2 a vẽ đồ thị d1 và d2 trên cùng hệ trục tọa độ
Cho hàm số y=(2m-3)x-1. a) tìm giá trị của m để đồ thị hàm số song song với đường hẳng y=-5x+3. Vẽ đồ thị. b) Tìm giá trị của m để đồ thị hàm số đi qua điểm A(-1;0). c) Tìm giá trị của m để đồ thị của hàm số đã cho và các bạn các đường thẳng y=1 và y=2x-5 đồng qui tại một điểm. Giúp mình giải bài này với.
Cho hàm số y = (m-1)x + 2 (1)
a) Tìm m để hàm số (1) là hàm số đồng biến;
b) Tìm m để đồ thị hàm số (1) là đường thẳng song song với đường thẳng y = 2x;
c) Tìm m để đồ thị của hàm số (1) đồng quy với hai đường thẳng y-3= 0 và y = x-1
d) Chứng minh đồ thị hàm số (1) luôn đi qua điểm cố định với mọi m.
a: Để hàm số đồng biến thì m-1>0
hay m>1
Cho hàm số \(y=\dfrac{2}{2-x}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Tìm các giao điểm của (C) và đồ thị của hàm số \(y=x^2+1\). Viết phương trình tiếp tuyến của (C) tại mỗi giao điểm
c) Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng H giới hạn bởi đồ thị (C) và các đường thẳng \(y=0;x=0;x=1\) xung quanh trục Ox