Bài 1: Cho tam giác HIK, N là trung điểm của IK. trên tia đối của tia NH lấy điểm M sao cho NH = NM. Chứng minh rằng
a) ∆𝐻𝐼𝑁 và ∆𝐾𝐼𝑀 bằng nhau
b) 𝐼𝐻 // MK
Ai giúp mình bài này đi
Cho tam giác ABC, gọi M, N theo thứ tự là trung điểm của AB,
AC. Trên tia NM lấy điểm D sao cho NM = MD. Chứng minh rằng
a) ∆AMN = ∆BMD
b) DB // AC
a: Xét ΔAMN và ΔBMD có
MA=MB
\(\widehat{AMN}=\widehat{BMD}\)
MN=MD
Do đó: ΔAMN=ΔBMD
b: Xét tứ giác ADBN có
M là trung điểm của AB
M là trung điểm của DN
Do đó: ADBN là hình bình hành
Suy ra: DB//AN
hay DB//AC
Cho tam giác ABC . Gọi M và N là trung điểm của AB , AC. Trên tia đối của tia MC lấy K sao cho MK = MC.
a) Chứng minh tam giác AMK=BMC
b) Trên tia đối của tia NB lấy I sao cho NI = NB . Chứng minh AI=BC
c) Chứng minh A là trung điểm của IK
Ta có hình vẽ:
a) Vì M là trung điểm của AB nên AM = BM = \(\frac{AB}{2}\)
Xét Δ AMK và Δ BMC có:
AM = BM (cmt)
AMK = BMC (đối đỉnh)
MK = MC (gt)
Do đó, Δ AMK = Δ BMC (c.g.c) (đpcm)
b) Vì N là trung điểm của AC nên AN = NC
Xét Δ ANI và Δ CNB có:
AN = NC (cmt)
ANI = CNB (đối đỉnh)
NI = NB (gt)
Do đó, Δ ANI = Δ CNB (c.g.c)
=> AI = BC (2 cạnh tương ứng) (đpcm)
c) Vì Δ AMK = Δ BMC (câu a) => AKM = MCB (2 góc tương ứng)
Mà AKM và MCB là 2 góc so le trong nên AK // BC (1)
Vì Δ ANI = Δ CNB (câu b) => IAN = NBC (2 góc tương ứng)
Mà IAN và NBC là 2 góc so le trong nên AI // BC (2)
Từ (1) và (2) => AK và AI trùng nhau hay 3 điểm I, A, K thẳng hàng (3)
Có: Δ AMK = Δ BMC (câu a) => AK = BC (2 cạnh tương ứng)
Mà AI = BC (câu b) => AK = AI (4)
Từ (3) và (4) => A là trung điểm của IK (đpcm)
Baøi 1. Cho tam giác ABC có M là trung điểm AB và N là trung điểm AC. Trên tia đối của tia NM lấy E sao cho NM = NE. Chứng minh MECB là hình bình hành.
ta có
N là trung điểm của AC
M là trung điểm của AB
=> MN là đường trung bình
=> MN // BC và =1/2BC (1)
MN=NE=1/2BC
=>MN+NE=1/2BC+1/2BC=BC (2)
từ 1 và 2 =>MECB là hình bình hành (2 cặp đối // và bằng nhau)
Baøi 1. Cho tam giác ABC có M là trung điểm AB và N là trung điểm AC. Trên tia đối của tia NM lấy E sao cho NM = NE. Chứng minh MECB là hình bình hành.
Vì \(\left\{{}\begin{matrix}AM=MB\\AN=NC\end{matrix}\right.\) nên MN là đtb tam giác BAC
Do đó \(MN//BC\) hay \(ME//BC\)
Và \(2MN=BC=ME\left(E.là.trung.điểm\right)\)
Vậy MECB là hbh
Cho tam giác ABC có AB=Â. Gọi M là trung điểm của BC
a) chứng minh tam giác ABM = tam giác ACM
b) gọi N là trung điểm của AC. Trên tia đối của tia NM lấy điểm E sao cho NM=NE. Chứng minh: AE=CM
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét tứ giác AMCE có
N là trung điểm của AC
N là trung điểm của ME
Do đó: AMCE là hình bình hành
Suy ra: AE=CM
Cho tam giác MNK có MN = MK. Gọi H là trung điểm của cạnh NK.
1) Chứng minh:ΔMNH=ΔMKH. 2) Chứng minh:
3) Trên tia đối của tia NM lấy điểm D, trên tia đối của tia KM lấy điểm E sao cho ND = KE. Chứng minh: MD = ME và ΔHMD = ΔHME.
4) Gọi O là trung điểm của DE. Chứng minh: Ba điểm M, H, O thẳng hàng. 5) NK//DE
1) Xét tam giác MNH và tam giác MKH có:
+ MN = MK (gt).
+ MH chung.
+ NH = KH (H là trung điểm NK).
=> Tam giác MNH = Tam giác MKH (c - c - c).
3) Ta có: MD = MN + ND; ME = MK + KE.
Mà ND = KE (gt); MN = MK (gt).
=> MD = ME.
Xét tam giác MNK có: MN = MK (gt).
=> Tam giác MNK cân tại M.
Mà MH là đường trung tuyến (H là trung điểm NK).
=> MH là đường phân giác \(\widehat{M}\) (Tính chất các đường trong tam giác cân).
Xét tam giác HMD và tam giác HME:
+ MD = ME (cmt).
+ \(\widehat{DMH}=\widehat{EMH}\) (MH là đường phân giác \(\widehat{M}\)).
+ MH chung.
=> Tam giác HMD = Tam giác HME (c - g - c).
4) Xét tam giác MDE có: MD = ME (cmtt).
=> Tam giác MDE cân tại M.
Mà MO là đường trung tuyến (O là trung điểm DE).
=> MO là đường phân giác \(\widehat{M}\) (Tính chất các đường trong tam giác cân).
Mà MH là đường phân giác \(\widehat{M}\) (cmt).
=> Ba điểm M, H, O thẳng hàng.
5) Xét tam giác MDE cân tại M có: MO là đường trung tuyến (O là trung điểm DE).
=> MO là đường cao (Tính chất các đường trong tam giác cân).
=> MO \(\perp\) DE. (1)
Xét tam giác MNK cân tại M có: MH là đường trung tuyến (H là trung điểm NK).
=> MH là đường cao (Tính chất các đường trong tam giác cân).
=> MH \(\perp\) NK
Hay MO \(\perp\) NK. (2)
Từ (1) và (2) => NK // DE (Từ vuông góc đến song song).
cho tam giác DEF có DE=DF . Gọi M là trung điểm của EF chứng minh rằng
A, tam giác DEM = tam giác DFM
B,chứng minh góc DME = góc DMF từ đo suy ra DM vuống góc EF
C, trên tia đối của tia MD lấy điểm N sao cho M là trung điểm của DN chứng minh DE// NF
D , Vẽ điểm I thuộc DE , điểm k thuộc đoạn NF sao cho DI=NK chứng minh ba điển I,M,K thẳng hàng
a: Xét ΔDEM và ΔDFM có
DE=DF
DM chung
EM=FM
Do đó: ΔDEM=ΔDFM
Cho tam giác ABC nhọn, lấy điểm M là trung điểm của cạnh AB , lấy điểm N là trung điểm của cạnh AC . Trên tia đối của tia NM lấy điểm Q sao cho NM NQ . Chứng minh rằng:
a) Hai tam giácAMN ,CQN bằng nhau.
b) MB song song với QC .
c) MN =1/2 BC
a) Xét ∆AMN và ∆CQN có:
AN = NC (do N là trung điểm của AC)
∠ANM = ∠CNQ (đối đỉnh)
NM = NQ (gt)
⇒ ∆AMN = ∆CQN (c-g-c)
b) Do ∆AMN = ∆CQN (cmt)
⇒ ∠MAN = ∠NCQ (hai góc tương ứng)
Mà ∠MAN và ∠NCQ là hai góc so le trong
⇒ AM // CQ
⇒ MB // CQ
c) Do ∆AMN = ∆CQN (cmt)
⇒ AM = CQ (hai cạnh tương ứng)
Mà AM = MB (do M là trung điểm của AB)
⇒ MB = CQ
Do BM // CQ (cmt)
⇒ ∠BMC = ∠QCM (so le trong)
Xét ∆BMC và ∆QCM có:
BM = CQ (cmt)
∠BMC = ∠QCM (cmt)
CM là cạnh chung
⇒ ∆BMC = ∆QCM (c-g-c)
⇒ BC = MQ (hai cạnh tương ứng)
Do NM = NQ (gt)
⇒ MN = 1/2 MQ
Mà BC = MQ (cmt)
⇒ MN = 1/2 BC
Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.
Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc tương ứng. c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.
Bài 3: Cho ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng: a) BC // ED b) DBC = BDE
Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.
Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. Chứng minh: a) DB = DC b) AD BC
Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: a) ABM = DCM. b) AB // DC. c) AM BC
Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.
Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh a) PM = PN. b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.
Bài 9: Cho tam giác ABC có góc A bằng 90 0 . Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh: AB = DE b) Tính số đo góc EDC?
Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: a) MA = MD b) BA điểm A, M, D thẳng hàng.
11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: a) CP//AB b) MB = CP c) BC = 2MN