Vì \(\left\{{}\begin{matrix}AM=MB\\AN=NC\end{matrix}\right.\) nên MN là đtb tam giác BAC
Do đó \(MN//BC\) hay \(ME//BC\)
Và \(2MN=BC=ME\left(E.là.trung.điểm\right)\)
Vậy MECB là hbh
Vì \(\left\{{}\begin{matrix}AM=MB\\AN=NC\end{matrix}\right.\) nên MN là đtb tam giác BAC
Do đó \(MN//BC\) hay \(ME//BC\)
Và \(2MN=BC=ME\left(E.là.trung.điểm\right)\)
Vậy MECB là hbh
Baøi 1. Cho tam giác ABC có M là trung điểm AB và N là trung điểm AC. Trên tia đối của tia NM lấy E sao cho NM = NE. Chứng minh MECB là hình bình hành.
Baøi 3. Cho tam giác ABC trên tia đối của tia AB lấy điểm D sao cho AD = AB, trên tia đối của tia AC lấy E sao cho AE=AC. Chứng minh BCDE là hình bình hành.
Baøi 3. Cho tam giác ABC trên tia đối của tia AB lấy điểm D sao cho AD = AB, trên tia đối của tia AC lấy E sao cho AE=AC. Chứng minh BCDE là hình bình hành.
Cho tam giác ABC nhọn(AB>BC).Gọi M,N,P lần lượt là trung điểm AB,AC,BC.Trên tia đối tia NM lấy D sao cho ND=NM.Chứng minh a) Tứ giác BMNP là hình bình hành b)BN//DP c)PN đi qua trung điểm AD d)Gọi MC cắt PD ở E. Chứng minh DE=2PE
Cho tam giác ABC có E,F,D lần lượt là trung điểm AB, BC và CA. Chứng minh: a) tứ giác BFED là hình bình hành. b) Trên tia đối của tia FD lấy điểm M sao cho FD=FM. Chứng minh tứ giác ABDM là hình bình hành. c) Chứng minh tứ giác AMCD là hình bình hành.
Cho ∆ ABC nhọn .lấy N là trung điểm AC , từ N kẻ NH // BC , NE // AB
a) Chứng minh : tứ giác BHNE , AHEN là hình bình hành
b) Lấy K là trung điểm HN . chứng minh A,K,E thẳng hàng
c) Chứng minh : NM là đường trung bình tam giác ABC
Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I. Chứng minh rằng:
a)Tứ giác AMCK là hình bình hành.
b)Tứ giác ABMK là hình gì?Vì sao?
c)Trên tia đối của tia MA lấy điểm E sao cho ME=MA. Chứng minh tứ giác ABEC là hình thoi.
d)Tìm điều kiện của tam giác ABC để tứ giác AMCK là hình vuông.
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH, gọi M là trung điểm AC.Trên tia đối của tia MH lấy D sao cho MD=MH a) Chứng minh ADHC là hình chữ nhật b) Gọi E là điểm đối xứng C qua H. Chứng minh ADHE là hình bình hành c) Vẽ EK vuông góc AB tại K. Gọi I là trung điểm AK. Chứng minh KE // IH
Cho tam giác ABC vuông tại A. Gọi M,N lần lượt là trung điểm của AC và BC.
a) Chứng minh rằng tứ giác AMNB là hình thang vuông.
b)Gọi I là giao điểm của BM và AN. Trên tia đối của tia NA lấy điểm E sao cho sao cho
NE = NI. Trên tia đối của tia MB lấy điểm F sao cho MF = MI. Chứng minh rằng EF // AB.
c) Gọi H là trung điểm cảu AB, K là trung điểm của EF. Chứng minh rằng bốn điểm
C,K,I,H thẳng hàng