tìm x biết
3x^2-x=0
2x(x-5)-x(3+2x)=26
tìm x biết:
a)x2 + 3x = 0 b) x3 – 4x = 0
c) 5x(x-1) = x-1 d) 2(x+5) - x2-5x = 0
e) 2x(x-5)-x(3+2x)=26 f) 5x.(x – 2012) – x + 2012 = 0
a) \(\Rightarrow x\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)
tim x biết
3x+4=0
2x*(x-1)-(1+2x)=-34
X^2+9x-10=0
(7x-1)*(2+5x)=0
\(3x+4=0\Leftrightarrow x=-\dfrac{4}{3}\\ 2x\left(x-1\right)-\left(1+2x\right)=-34\\ \Leftrightarrow2x^2-2x-1-2x=-34\\ \Leftrightarrow2x^2-4x+33=0\\ \Leftrightarrow2\left(x^2-2x+1\right)+30=0\\ \Leftrightarrow2\left(x-1\right)^2+30=0\\ \Leftrightarrow x\in\varnothing\left[2\left(x-1\right)^2+30\ge30>0\right]\\ x^2+9x-10=0\\ \Leftrightarrow x^2-x+10x-10=0\\ \Leftrightarrow\left(x-1\right)\left(x+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-10\end{matrix}\right.\\ \left(7x-1\right)\left(2+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}7x-1=0\\2+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
Hàm số y = x 2 − 2 x k h i x ≥ 0 2 x k h i − 1 ≤ x < 0 − 3 x − 5 k h i x < − 1 .
A. Không có cực trị
B. Có một điểm cực trị
C. Có hai điểm cực trị
D. Có ba điểm cực trị
Đáp án B
Trên khoảng 0 ; + ∞ , ta có y ' = 2 x − 2 = 0 ⇒ x = 1 ⇒ Hàm số có 1 điểm cực trị.
Trên khoảng 1 ; 0 , ta có y ' = 2 > 0 ; ∀ x ∈ − 1 ; 0 ⇒ Hàm số đồng biến trên − 1 ; 0 .
Trên khoảng − ∞ ; − 1 , ta có y ' = − 3 < 0 ; ∀ x ∈ − ∞ ; − 1 ⇒ Hàm số nghịch biến trên − ∞ ; − 1 .
Vậy hàm số đã cho có một điểm cực trị.
Hàm số y = x 2 − 2 x khi x ≥ 0 2 x khi − 1 ≤ x < 0 − 3 x − 5 khi x < − 1
A. Không có cực trị
B. Có một điểm cực trị.
C. Có hai điểm cực trị
D. Có ba điểm cực trị.
Đáp án D
Ta có y = x 2 − 2 x khi x ≥ 0 2 x khi − 1 ≤ x < 0 − 3 x − 5 khi x < − 1 ⇒ y ' = 2 x − 2 khi x > 0 2 khi − 1 < x < 0 − 3 khi x < − 1
Dễ thấy y' đổi dấu khi qia các điểm x = 1 ; x = 0 ; x = − 1
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Bài 3: Tìm x biết:
a) \(2x\left(x-5\right)-x\left(2x+3\right)=26\)
b) \(\left(3x^2-x+1\right)\left(x-1\right)+x^2\left(4-3x\right)=\frac{5}{2}\)
\(a,2x\left(x-5\right)-x\left(2x+3\right)=26\)
\(\Leftrightarrow2x^2-10x-2x^2-3x=26\)
\(\Leftrightarrow-13x=26\)
\(\Leftrightarrow x=-2\)
\(b,\left(3x^2-x+1\right)\left(x-1\right)+x^2\left(4-3x\right)=\frac{5}{2}\)
\(\Leftrightarrow3x^3-3x^2-x^2+x+x-1+4x^2-3x^3=\frac{5}{2}\)
\(\Leftrightarrow2x=\frac{7}{2}\)
\(\Leftrightarrow x=\frac{7}{4}\)
Tìm x biết:
a. 2x(x-5)-x(3+2x)=26
b. 3x3-48x=0
a, 2x(x-5) - x ( 3 + 2x ) = 26
=> 2x^2 - 10x - 3x - 2x ^ 2 = 26
=> - 13 x = 26
=> x = -2
a, \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
\(\Leftrightarrow-13x=26\)
\(\Leftrightarrow x=-2\)
Vậy x = -2
b, \(3x^3-48x=0\)
\(\Leftrightarrow3x\left(x^2-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4;x=-4\end{cases}}\)
Vậy x = 0 hoặc x = 4 hoặc x = -4
a) 2x(x - 5) - x(3 + 2x) = 26
2x2 - 10x - 3x - 2x2 = 26
-13x = 26
=> x = 2
b) 3x3 - 48x = x(3x2 - 48) = 0
=> \(\orbr{\begin{cases}x=0\\3x^2-48=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\3x^2=48\Rightarrow x^2=16\end{cases}}}\Rightarrow\orbr{\begin{cases}x=0\\x=4;-4\end{cases}}\)
Vậy x = {0 ; 4 ; -4}
Bài 1: tìm x biết
a, (3x+4)^2 - (3x-1) (3x+1)=49
b, (x+2) (x^2x+4) -x (x+3) (x-3)=26
tìm \(x\) biết:
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)
\(\Rightarrow3x-6x^2+6x+14=29\)
\(\Rightarrow-6x^2+9x-15=0\)
\(\Rightarrow-6\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{93}{8}=0\)
\(\Rightarrow-6\left(x-\dfrac{3}{4}\right)^2-\dfrac{93}{8}=0\)(vô lý)
Vậy \(S=\varnothing\)
a. \(2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
hay x=-2