Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 2:07

a: \(y'=\left(sin3x\right)'+\left(sin^2x\right)'=3\cdot cos3x+sin\left(x+pi\right)\)

b: \(y'=\left(log_2\left(2x+1\right)\right)'+\left(3^{-2x+1}\right)'\)

\(=\dfrac{2}{\left(2n+1\right)\cdot ln2}-2\cdot3^{-2x+1}\cdot ln3\)

Buddy
Xem chi tiết
Bùi Nguyên Khải
17 tháng 8 2023 lúc 11:19

tham khảo:

a)\(y'=xsin2x+sin^2x\)

\(y'=sin^2x+xsin2x\)

b)\(y'=-2sin2x+2cosx\\ y'=2\left(cosx-sin2x\right)\)

c)\(y=sin3x-3sinx\)

\(y'=3cos3x-3cosx\)

d)\(y'=\dfrac{1}{cos^2x}-\dfrac{1}{sin^2x}\)

\(y'=\dfrac{sin^2x-cos^2x}{sin^2x.cos^2x}\)

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 2:21

a: \(y'=4\cdot3x^2-3\cdot2x+2=12x^2-6x+2\)

b: \(y'=\dfrac{\left(x+1\right)'\left(x-1\right)-\left(x+1\right)\left(x-1\right)'}{\left(x-1\right)^2}=\dfrac{x-1-x-1}{\left(x-1\right)^2}=\dfrac{-2}{\left(x-1\right)^2}\)

c: \(y'=-2\cdot\left(\sqrt{x}\cdot x\right)'\)

\(=-2\cdot\left(\dfrac{x+x}{2\sqrt{x}}\right)=-2\cdot\dfrac{2x}{2\sqrt{x}}=-2\sqrt{x}\)

d: \(y'=\left(3sinx+4cosx-tanx\right)\)'

\(=3cosx-4sinx+\dfrac{1}{cos^2x}\)

e: \(y'=\left(4^x+2e^x\right)'\)

\(=4^x\cdot ln4+2\cdot e^x\)

f: \(y'=\left(x\cdot lnx\right)'=lnx+1\)

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2023 lúc 20:17

a: \(y=u^2=\left(sinx\right)^2\)

b: \(y'\left(x\right)=\left(sin^2x\right)'=2\cdot sinx\cdot cosx\)

\(y'\left(u\right)=\left(u^2\right)'=2\cdot u\)

\(u'\left(x\right)=\left(sinx\right)'=cosx\)

=>\(y'\left(x\right)=y'\left(u\right)\cdot u'\left(x\right)\)

Buddy
Xem chi tiết
Bùi Nguyên Khải
17 tháng 8 2023 lúc 21:49

tham khảo:

a)\(y'\left(x\right)=5\left(\dfrac{2x-1}{x+2}\right)^4.\dfrac{\left(x+2\right)\left(2\right)-\left(2x-1\right).1}{\left(x+2\right)^2}\)

\(=\dfrac{10\left(2x-1\right)\left(x+2\right)^3}{\left(x+2\right)^4}=\dfrac{20x-50}{\left(x+2\right)^4}\)

b)\(y'\left(x\right)=\dfrac{2\left(x^2+1\right)-2x\left(2x\right)}{\left(x^2+1\right)^2}\)\(=\dfrac{2\left(1-x^2\right)}{\left(x^2+1\right)^2}\)

c)\(y'\left(x\right)=e^x.2sinxcosx+e^xsin^2x.2cosx\)

\(=2e^xsinx\left(cosx+sinxcosx\right)\)

\(=2e^xsinxcos^2x\)

d)\(y'\left(x\right)=\dfrac{1}{x\sqrt{x}}.\left(+\dfrac{1}{2\sqrt{x}}\right)\)

\(=\dfrac{1}{\sqrt{x}\left(2\sqrt{x}+\sqrt{x}+2\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(3\sqrt{x}+2\right)}\)

Buddy
Xem chi tiết
Mai Trung Hải Phong
17 tháng 8 2023 lúc 15:03

\(a,y'=\left(f\left(g\left(x\right)\right)\right)'\)

\(=f'\left(g\left(x\right)\right).g'\left(x\right)\)

\(=e^{g\left(x\right)}.\left(2x-1\right)\)

\(=e^{x^2-x}.\left(2x-1\right)\)

\(b,y'=\dfrac{d}{dx}\left(3^{sinx}\right)\)

\(=\dfrac{d}{dx}\left(e^{ln3.sinx}\right)\)

\(=\dfrac{d}{dx}\left(ln3.sinx\right).e^{ln3.sinx}\)

\(=ln3.cosx.3^{sinx}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 6 2018 lúc 6:49

Chọn D.

Nguyễn Hải Vân
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2021 lúc 22:23

a.

\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)

b.

\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)

c.

\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)

Buddy
Xem chi tiết
Hà Quang Minh
24 tháng 8 2023 lúc 10:32

\(y'=\left(cosx\right)'\\ =\left(\dfrac{\pi}{2}-x\right)'cos\left(\dfrac{\pi}{2}-x\right)\\ =-cos\left(\dfrac{\pi}{2}-x\right)\\ =-sinx\)

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2023 lúc 20:31

a: \(y'=\left[tan\left(e^x+1\right)\right]'=\dfrac{\left(e^x+1\right)'}{cos^2\left(e^x+1\right)}=\dfrac{e^x}{cos^2\left(e^x+1\right)}\)

b: \(y'=\left(\sqrt{sin3x}\right)'\)

\(=\dfrac{\left(sin3x\right)'}{2\sqrt{sin3x}}=\dfrac{3\cdot cos3x}{2\sqrt{sin3x}}\)

c: \(y=cot\left(1-2^x\right)\)

=>\(y'=\left[cot\left(1-2^x\right)\right]'\)

\(=\dfrac{-2}{sin^2\left(1-2^x\right)}\cdot\left(-2^x\cdot ln2\right)\)

\(=\dfrac{2^{x+1}\cdot ln2}{sin^2\left(1-2^x\right)}\)