Có bao nhiêu giá trị nguyên âm của m để hàm số y = x + 5 + ' 1 - m x - 2 đồng biến trên [ 5 ; + ∞ ) ?
A. 10
B. 8
C. 9
D. 11
Có bao nhiêu giá trị nguyên âm của m để hàm số y = x + 5 + 1 − m x − 2 đồng biến trên 5 ; + ∞ ?
A. 10
B. 8
C. 9
D. 11
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = x 2 ( x + 1 ) ( x 2 + 2 m x + 4 ) . Có bao nhiêu giá trị nguyên âm của tham số m để hàm số y = f ( x ) 2 có đúng một điểm cực trị.
A. 1.
B. 4.
C. 2.
D. 3.
Có bao nhiêu giá trị nguyên âm của tham số m để hàm số y = x + 1 x 2 + x + m nghịch biến trên khoảng (-1;1)
A. 1
B. Vô số
C. 5
D. 6
có bao nhiêu giá trị nguyên âm của tham số m để hàm số y= x3+mx-\(\dfrac{1}{5x^5}\)đồng biến trên (0;-\(\infty\)).
\(y'=3x^2+\dfrac{1}{x^6}+m\)
Hàm đồng biến trên \(\left(0;+\infty\right)\Leftrightarrow y'\ge0;\forall x>0\)
\(\Leftrightarrow3x^2+\dfrac{1}{x^6}+m\ge0\)
\(\Leftrightarrow-m\le3x^2+\dfrac{1}{x^6}\)
\(\Leftrightarrow-m\le\min\limits_{x>0}\left(3x^2+\dfrac{1}{x^6}\right)\)
Ta có:
\(3x^2+\dfrac{1}{x^6}=x^2+x^2+x^2+\dfrac{1}{x^6}\ge4\sqrt[4]{\dfrac{x^6}{6}}=4\)
\(\Rightarrow-m\le4\Rightarrow m\ge-4\)
\(\Rightarrow m=\left\{-4;-3;-2;-1\right\}\)
Cho hàm số y=f(x) có đạo hàm f ' x = x 2 x + 1 x 2 + 2 m x + 4 . Có bao nhiêu giá trị nguyên âm của tham số m để hàm số y = f x 2 có đúng một điểm cực trị?
A. 1
B. 3
C. 4
D. 2
Có bao nhiêu giá trị nguyên âm của tham số m để hàm số: y = x3 + mx - \(\dfrac{1}{5x^5}\) đồng biến trên khoảng (0; +\(\infty\))
\(y'=3x^2+m+\dfrac{1}{x^6}\ge0\) ; \(\forall x>0\)
\(\Leftrightarrow3x^2+\dfrac{1}{x^6}\ge-m\)
\(\Leftrightarrow-m\le\min\limits_{x>0}\left(3x^2+\dfrac{1}{x^6}\right)\)
Ta có: \(3x^2+\dfrac{1}{x^6}=x^2+x^2+x^2+\dfrac{1}{x^6}\ge4\sqrt[4]{\dfrac{x^6}{x^6}}=4\)
\(\Rightarrow-m\le4\Rightarrow m\ge-4\)
Có bao nhiêu giá trị nguyên âm của tham số m để hàm số y = x 3 + m x - 1 5 x 5 đồng biến với x> 0?
A. 4
B. 5
C. 3
D. 2
+ Hàm số xác định và liên tục với mọi x> 0.
Ta có y ' = 3 x 2 + m + 1 x 6 , ∀ x ∈ 0 ; + ∞
+ Hàm số đồng biến trên khoảng (0; +∞) khi và chỉ khi y ' = 3 x 2 + m + 1 x 6 ≥ 0 với mọi x> 0.
⇔ m ≥ - 3 x 2 - 1 x 6 = g ( x ) , ∀ x ∈ ( 0 ; + ∞ ) ⇔ m ≥ m a x x ∈ ( 0 ; + ∞ ) g ( x ) . g ' ( x ) = - 6 x + 6 x 7 = - 6 x 8 + 6 x 7 = 0 ⇔ x = 1
Bảng biến thiên
Suy ra maxg( x) = g(1) = -4 và do đó để hàm số đã cho đồng biến t với x> 0 thì m≥ -4
Mà m nguyên âm nên m ∈ - 4 ; - 3 ; - 2 ; - 1 .
Chọn A.
Có bao nhiêu giá trị nguyên âm của tham số m để hàm số y = 3 x 4 - 4 x 3 - 12 x 2 + m có 7 điểm cực trị?
A. 0
B. 4
C. 5
D. 1
Xét hàm số y= 3x4- 4x3-12x2+m
Có
Ta có bảng biến thiên
Từ bảng biến thiên, để hàm số đã cho có 7 cực trị thì m - 5 < 0 m > 0 ⇔ 0 < m < 5 .
Vì m nguyên nên các giá trị cần tìm của m là m ∈ 1 ; 2 ; 3 ; 4 .
Chọn A.
có bao nhiêu giá trị nguyên âm của tham số m để hàm số y=\(\sqrt{x^2-2mx-2m+3}\) có tập xác định là R
Hàm số có tập xác định là R \(\Leftrightarrow x^2-2mx-2m+3\ge0\forall x\in R\)
\(\Leftrightarrow\Delta'=m^2+\left(2m-3\right)\leq0\)
\(\Leftrightarrow\left(m-1\right)\left(m+3\right)\le0\Leftrightarrow-3\le m\le1\).
Các gt nguyên âm của m thoả mãn là : -3; -2; -1.
Vậy có 3 gt nguyên âm của m thoả mãn.