\(y'=3x^2+m+\dfrac{1}{x^6}\ge0\) ; \(\forall x>0\)
\(\Leftrightarrow3x^2+\dfrac{1}{x^6}\ge-m\)
\(\Leftrightarrow-m\le\min\limits_{x>0}\left(3x^2+\dfrac{1}{x^6}\right)\)
Ta có: \(3x^2+\dfrac{1}{x^6}=x^2+x^2+x^2+\dfrac{1}{x^6}\ge4\sqrt[4]{\dfrac{x^6}{x^6}}=4\)
\(\Rightarrow-m\le4\Rightarrow m\ge-4\)