Tìm m để phương trình ( 1 2 ) x 2 - 2 x = m 2 - m + 1 có 4 nghiệm phân biệt
A. 0<m<1
B. m>0
C. 2<m<5
D. m>5
Cho phương trình : x^2 + x-3m+2=0
a, Gỉai phương trình khi m=1 .
b, Tìm m để phương trình có nghiệm x=2.
c, Tìm m để phương trình có 2 nghiệm phân biệt .
d, Tìm m để phương trình có nghiệm kép.
e, Tìm m để phương trình vô nghiệm
a, Với m=1 thay vào pt
Ta có
\(x^2+x-1=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
b,
Thay x=2 vào pt
ta có
\(4-2-3m+2=0\)
\(\Leftrightarrow4-3m=0\)
\(\Rightarrow m=\dfrac{4}{3}\)
c, Ta có
\(\Delta=1-4\left(-3m+2\right)\)
\(=12m-7\)
Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\Rightarrow12m-7>0\)
\(\Rightarrow m>\dfrac{7}{12}\)
d,
Để ptcos nghiệm kép thì \(\Delta=0\)
\(\Rightarrow12m-7=0\)
\(\Rightarrow m=\dfrac{7}{12}\)
e,
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Rightarrow m< \dfrac{7}{12}\)
Cho phương trình x^2 - 2 (m-1) x+m-3=0
1, Giải phương trình với m=-2
2, Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt
3, Tìm m để phương trình có 2 nghiệm trái dấu
4, Tìm m để phương trình có 2 nghiệm dương phân biệt
5, Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn x12+x22=10
6, Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn x1+2x2=0
a Tìm m để phương trình vô nghiệm: x2 - (2m - 3)x + m2 = 0.
b Tìm m để phương trình vô nghiệm: (m - 1)x2 - 2mx + m -2 = 0.
c Tìm m để phương trình vô nghiệm: (2 - m)x2 - 2(m + 1)x + 4 - m = 0
\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)
\(b,\left(m-1\right)x^2-2mx+m-2=0\)
\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)
\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)
\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)
\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)
\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)
Cho phương trình 2x2 + 2(m+1)x +m2+4m + 3 =0
1/Tìm giá trị của m để phương trình nhận x=1 làm nghiệm.Với m vừa tìm đc ,hãy tìm nghiệm còn lại của phương trình
2/Tìm các giá trị của m để phương trình có hai nghiệm trái dấu
3/tìm các giá trị của m để phương trình có hai nghiệm x1, x2
4/ tìm m để phương trình có hai nghiệm x1,x2 sao cho biểu thức A=|x1x2 - 2(x1x2 ) đạt giá trịn lớn nhất
Cho phương trình (ẩn x): \(\left(m^2-4\right)x^2+2\left(m+2\right)x+1=0\)
a) Tìm m để phương trình có nghiệm
b) Tìm m để phương trình có nghiệm duy nhất
\(a,\Leftrightarrow\Delta'\ge0\\ \Leftrightarrow\left(m+2\right)^2-\left(m^2-4\right)\ge0\\ \Leftrightarrow m^2+4m+4-m^2+4\ge0\\ \Leftrightarrow4m+8\ge0\\ \Leftrightarrow m\ge-2\\ b,\Leftrightarrow\Delta'=0\Leftrightarrow m=-2\)
Cho phương trình \(\left(m-10\right)x^2-4mx+m-4=0\)
a) Tìm m để phương trình có nghiệm
b) Tìm m để phương trình có hai nghiệm phân biệt đều dương
c) Tìm m để phương trình có hai nghiệm x1; x2 sao cho \(\dfrac{1}{x_1}+\dfrac{1}{x^2}>1\)
Trường hợp 1: m=10
Phương trình sẽ là -40x+6=0
hay x=3/20
=>m=10 sẽ thỏa mãn trường hợp a
Trường hợp 2: m<>10
\(\Delta=\left(-4m\right)^2-4\left(m-10\right)\left(m-4\right)\)
\(=16m^2-4\left(m^2-14m+40\right)\)
\(=16m^2-4m^2+56m-160\)
\(=12m^2+56m-160\)
\(=4\left(3m^2+14m-40\right)\)
\(=4\left(3m^2-6m+20m-40\right)\)
\(=4\left(m-2\right)\left(3m+20\right)\)
a: Để phương trình có nghiệm thì (m-2)(3m+20)>=0
=>m>=2 hoặc m<=-20/3
b: Để phương trình có hai nghiệm phân biệt đều dương thì
\(\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\\dfrac{4m}{m-10}>0\\\dfrac{m-4}{m-10}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\m\in\left(-\infty;0\right)\cup\left(10;+\infty\right)\\m\in\left(-\infty;4\right)\cup\left(10;+\infty\right)\end{matrix}\right.\)
\(\Leftrightarrow m\in\left(-\infty;-\dfrac{20}{3}\right)\cup\left(10;+\infty\right)\)
Cho phương trình \(x^3+\left(1+m\right)x-m^2=0\)
1) Tìm m để phương trình có đúng 1 nghiệm
2) Tìm m để PT có 2 nghiệm
3) Tìm m để phương trình có 3 nghiệm
4) Tìm m để phương trình có 3 nghiệm dương phân biệt
5) Tìm m để phương trình có 2 nghiệm âm phân biệt
a Tìm m để phương trình \(x^2-\left(2m+1\right)x+m^2+1=0\)
có hai nghiệm phân biệt trong đó nghiệm này
gấp đôi nghiệm kia
b Tìm m để phương trình \(x^2-2mx+m-3=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1+2x_2\) =1
c Tìm m để phương trình \(x^2-2mx+\left(m-1\right)^3=0\)
có hai nghiệm trong đó nghiệm này là bình
phương của nghiệm kia .
d Tìm m để phương trình \(2x^2-\left(m+1\right)x+m+3=0\) có hai nghiệm sao cho hiệu hai nghiệm bằng 1.
d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)
\(=m^2+2m+1-8m-24\)
\(=m^2-6m-23\)
\(=m^2-6m+9-32\)
\(=\left(m-3\right)^2-32\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)
Ta có: \(x_1x_2=\dfrac{m+3}{2}\)
\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)
Cho phương trình \(mx^2+\left(m-1\right)x+m-1=0\)
a) Tìm m để phương trình vô nghiệm.
b) Tìm m để phương trình có hai nghiệm trái dấu.
c) Tìm m để phương trình có hai nghiệm x1; x2 sao cho \(x_1^2+x_2^2-3>0\)
a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)
Với \(m\ne0\) pt vô nghiệm khi:
\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)
\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)
\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)
c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)
\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)
Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
Cho phương trình \(x^2-2\left(m+1\right)x+m^2-1=0\) (1)
a. Giải phương trình khi m = 7
b. Tìm m để (1) có nghiệm
c. Tìm hệ thức giữa \(x_1,x_2\) không phụ thuộc vào m
d. Tìm m để phương trình có 2 nghiệm đối nhau
a, Thay m = 7 ta đc
\(x^2-16x+48=0\Leftrightarrow x^2-16x+64-16=0\)
\(\Leftrightarrow\left(x-8\right)^2-16=0\Leftrightarrow\left(x-12\right)\left(x-4\right)=0\Leftrightarrow x=12;x=4\)
b, \(\Delta'=\left(m+1\right)^2-\left(m^2-1\right)=m^2+2m+1-m^2+1=2m+2\)
Để pt có nghiệm khi \(2m+2\ge0\Leftrightarrow m\ge-1\)
d, Để pt có 2 nghiệm đối nhau khi \(m^2-1< 0\Leftrightarrow m^2< 1\Leftrightarrow-1< m< 1\)
d. Phương trình có 2 nghiệm đối nhau khi:
\(x_1+x_2=0\)
\(\Leftrightarrow2\left(m+1\right)=0\)
\(\Leftrightarrow m=-1\)