Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đặng tấn sang
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 23:17

a: Để phương trình có nghiệm thì (-2)^2-4(m-3)>=0

=>4-4m+12>=0

=>-4m+16>=0

=>-4m>=-16

=>m<=4

b: x1-x2=4

x1+x2=2

=>x1=3; x2=-1

x1*x2=m-3

=>m-3=-3

=>m=0(nhận)

Hoàng Nguyệt
Xem chi tiết
Nguyễn Trần Thành Đạt
13 tháng 3 2021 lúc 13:14

a) Thay m=-2 vào pt:

\(x^2-2.\left(-2+1\right).x-\left(-2+2\right)=0\\ \Leftrightarrow x^2+2x=0\\ \Leftrightarrow x.\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Với m= -2 => S= {-2;0}

b) Để phương trình trên có 1 nghiệm x1=2:

<=> 22 -2.(m+1).2-(m+2)=0

<=> 4-4m -4 -m-2=0

<=> -5m=2

<=>m=-2/5

c) ĐK của m để pt trên có nghiệm kép:

\(\Delta'=0\\ \Leftrightarrow\left(m+1\right)^2+1.\left(m+2\right)=0\\ \Leftrightarrow m^2+3m+3=0\)

Vô nghiệm.

Khai Anh Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 2 2021 lúc 13:01

a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)

\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)

Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2

nên Áp dụng hệ thức Viet, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)

Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì 

\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau

nguyễn xuân tùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2021 lúc 22:46

a) Để phương trình có nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-6\right)^2-4\cdot1\cdot\left(m-2\right)\ge0\)

\(\Leftrightarrow-4m+8+36\ge0\)

\(\Leftrightarrow-4m+44\ge0\)

\(\Leftrightarrow-4m\ge-44\)

hay \(m\le11\)

nguyen tuan
Xem chi tiết
Nguyễn Thị Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 20:46

a: Để đây là phương trình bậc nhất một ẩn thì m-2<>0

hay m<>2

b: Ta có: 7-4x=2x-5

=>-6x=-12

hay x=2

Thay x=2 vào (1), ta được:

2(m-2)+3=5

=>2m-4=2

=>2m=6

hay m=3(nhận)

Nhue
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 3 2023 lúc 10:23

Để đây làpt bậc nhất 1 ẩn thì m^2-4=0 và m-2<>0

=>m=-2

Mai Anh Phạm
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 5 2021 lúc 7:51

\(\Delta'=m^2-\left(m^2-m+2\right)=m-2\)

Pt đã cho có 2 nghiệm khi \(\Delta'\ge0\Leftrightarrow m\ge2\)

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+2\end{matrix}\right.\)

\(A=x_1x_2-2\left(x_1+x_2\right)\)

\(A=m^2-m+2-4m\)

\(A=m^2-5m+2=\left(m-\dfrac{5}{2}\right)^2-\dfrac{17}{4}\ge-\dfrac{17}{4}\)

\(A_{min}=-\dfrac{17}{4}\) khi \(m=\dfrac{5}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 4 2018 lúc 5:50

Phương trình mx2 – 2(m – 1)x + m − 3 = 0

(a = m; b = −2(m – 1); c = m – 3)

TH1: m = 0 ta có phương trình

2x – 3 = 02x = 3x = 3 2

TH2: m ≠ 0, ta có ∆ = b2 – 4ac = 4 (m – 1)2 – 4m. (m – 3)

= 4m2 – 8m + 4 – 4m2 + 12 = 4m + 4

Để phương trình đã cho có nghiệm thì ∆ ≥ 0

4m + 404m−4m−1

Vậy để phương trình đã cho có nghiệm thì m ≥ −1

Đáp án cần chọn là: C

Hưởng T.
Xem chi tiết
tran hong anh
23 tháng 7 2021 lúc 9:06

còn cái nịt