Tìm điều kiện của m để phương trình 2 sin 2 x + 3 cos 2 x = m . 3 sin 2 x có nghiệm.
Cho phương trình x²-2x+m-3=0 a) tìm điều kiện của m để phương trình có nghiệm số b)tìm m để phương trình trên có 2 nghiệm x1;x2 thỏa điều kiện x1-x2=4
a: Để phương trình có nghiệm thì (-2)^2-4(m-3)>=0
=>4-4m+12>=0
=>-4m+16>=0
=>-4m>=-16
=>m<=4
b: x1-x2=4
x1+x2=2
=>x1=3; x2=-1
x1*x2=m-3
=>m-3=-3
=>m=0(nhận)
Cho phương trình: \(^{x^2-2\left(m+1\right)x-\left(m+2\right)=0}\)
a) giải phương trình khi m=-2
b) tìm điều kiện của m để phương trình trên có 1 nghiệm x1=2
c) Tìm điều kiện của m để pt trên có nghiệm kép
Mong giúp đỡ
a) Thay m=-2 vào pt:
\(x^2-2.\left(-2+1\right).x-\left(-2+2\right)=0\\ \Leftrightarrow x^2+2x=0\\ \Leftrightarrow x.\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Với m= -2 => S= {-2;0}
b) Để phương trình trên có 1 nghiệm x1=2:
<=> 22 -2.(m+1).2-(m+2)=0
<=> 4-4m -4 -m-2=0
<=> -5m=2
<=>m=-2/5
c) ĐK của m để pt trên có nghiệm kép:
\(\Delta'=0\\ \Leftrightarrow\left(m+1\right)^2+1.\left(m+2\right)=0\\ \Leftrightarrow m^2+3m+3=0\)
Vô nghiệm.
Bài 5: Cho phương trình x2 – 4x + 2m - 3 = 0 a) Tìm điều kiện của m để phương trình có 2 nghiệm x1, X2 phân biệt thoả tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau. b) Tìm m để phương trình có 2 nghiệm X), x2 thoả mãn điều kiện x1 = 3x2
a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)
\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)
Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)
\(\Leftrightarrow-8m>-28\)
hay \(m< \dfrac{7}{2}\)
Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2
nên Áp dụng hệ thức Viet, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)
Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì
\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau
cho phương trình x^2-6x+m-2=0
a,tìm điều kiện của m để phương trình
a) Để phương trình có nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow\left(-6\right)^2-4\cdot1\cdot\left(m-2\right)\ge0\)
\(\Leftrightarrow-4m+8+36\ge0\)
\(\Leftrightarrow-4m+44\ge0\)
\(\Leftrightarrow-4m\ge-44\)
hay \(m\le11\)
cho phương trình (m - 1.x+ m =0) a) Tìm điều kiện của m để phương trình trên là phương trình bậc nhất một ẩn. b)Tìm điều kiện của m để phương trình trên có nghiệm x = -5 c)Tìm điều kiện của m để phương trình trên vô nghiệm.
Cho phương trình: (m - 2) x + 3 = 5 (1)
a) Tìm điều kiện của m để phương trình (1) là phương trình bậc nhất một ẩn?
b) Tìm giá trị của m để phương trình (1) tương đương với phương trình:
7- 4x = 2x - 5
a: Để đây là phương trình bậc nhất một ẩn thì m-2<>0
hay m<>2
b: Ta có: 7-4x=2x-5
=>-6x=-12
hay x=2
Thay x=2 vào (1), ta được:
2(m-2)+3=5
=>2m-4=2
=>2m=6
hay m=3(nhận)
Tìm điều kiện của tham số m để phương trình ( m2 - 4 ) x2 + (m-2) x + 3 = 0 là phương trình bậc nhất một ẩn?
Để đây làpt bậc nhất 1 ẩn thì m^2-4=0 và m-2<>0
=>m=-2
cho phương trình \(x^2-2mx+m^2-m+2=0\) với m là tham số và x là ẩn số
a,tìm điều kiện của m để phương trình có 2 nghiệm \(x_1,x_2\)
b,với điều kiện của câu a hãy tìm m để biểu thức A=\(x_1x_2-2x_1-2x_2\) đạt giá trị nhỏ nhất
\(\Delta'=m^2-\left(m^2-m+2\right)=m-2\)
Pt đã cho có 2 nghiệm khi \(\Delta'\ge0\Leftrightarrow m\ge2\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+2\end{matrix}\right.\)
\(A=x_1x_2-2\left(x_1+x_2\right)\)
\(A=m^2-m+2-4m\)
\(A=m^2-5m+2=\left(m-\dfrac{5}{2}\right)^2-\dfrac{17}{4}\ge-\dfrac{17}{4}\)
\(A_{min}=-\dfrac{17}{4}\) khi \(m=\dfrac{5}{2}\)
Tìm điều kiện của tham số m để phương trình m x 2 – 2 ( m – 1 ) x + m − 3 = 0 có nghiệm
A. m ≥ 1
B. m > 1
C. m ≥ −1
D. m ≤ −1
Phương trình mx2 – 2(m – 1)x + m − 3 = 0
(a = m; b = −2(m – 1); c = m – 3)
TH1: m = 0 ta có phương trình
2x – 3 = 0 ⇔ 2x = 3 ⇔ x = 3 2
TH2: m ≠ 0, ta có ∆ = b2 – 4ac = 4 (m – 1)2 – 4m. (m – 3)
= 4m2 – 8m + 4 – 4m2 + 12 = 4m + 4
Để phương trình đã cho có nghiệm thì ∆ ≥ 0
⇔ 4m + 4 ≥ 0 ⇔ 4m ≥ −4 ⇔ m ≥ −1
Vậy để phương trình đã cho có nghiệm thì m ≥ −1
Đáp án cần chọn là: C
a)Cho phương trình : (m+2)x^2 - (2m-1)x-3+m=0 tìm điều kiện của m để phương trình có hai nghiệm phân biệt x1, x2 sao cho nghiệm này gấp đôi nghiệm kia
b)Cho phương trình bậc hai: x^2-mx+m-1=0. Tìm m để phương trình có hai nghiệm x1;x2 sao cho biểu thức R=2x1x2+3/x1^2+x2^2+2(1+x1x2) đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
c)Định m để hiệu hai nghiệm của phương trình sau đây bằng 2
mx^2-(m+3)x+2m+1=0
Mọi người giúp em giải chi tiết ra với ạ. Em cảm ơn!