giúp mình câu này với ạ
giup minh cau nay voi a
g: \(\text{Δ}=\left(-6\right)^2-4\left(2m+1\right)=36-8m-4=-8m+32\)
Để phương trình có hai nghiệm thì -8m+32>=0
=>m<=4
Để phương trình có hai nghiệm cùng âm thì:
\(\left\{{}\begin{matrix}m< =4\\\dfrac{-\left(-6\right)}{1}< 0\\2m+1>0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
h: \(\left\{{}\begin{matrix}2x_1-x_2=15\\x_1+x_2=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=7\\x_2=-1\end{matrix}\right.\)
x1*x2=2m+1
=>2m+1=-7
=>2m=-8
=>m=-4
i: \(x_1^2+x_2^2=5\)
=>(x1+x2)^2-2x1x2=5
=>6^2-2(2m+1)=5
=>36-4m-2=5
=>34-4m=5
=>4m=29
=>m=29/4(loại)
j: \(x_1^3+x_2^3=5\)
=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=5\)
=>\(6^3-3\cdot6\cdot\left(2m+1\right)=5\)
=>216-18(2m+1)=5
=>18(2m+1)=211
=>2m+1=211/18
=>2m=193/18
=>m=193/36(loại)
giup minh cau nay voi a
A=P^2-P
\(=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}-2\right)^2}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
\(=\dfrac{x+2\sqrt{x}+1-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)^2}=\dfrac{3\sqrt{x}+3}{\left(\sqrt{x}-2\right)^2}>=0\)
=>P^2>=P
giup minh cau nay voi a
TBC cua 2 so la 30.Biet St1 gap 4 lan St2. Tim 2 so do
giup minh tra loi cau hoi nay voi ban minh dat thu thach cau hoi minh hong bit cau nay giup minh tra loi cau nay voi bi thua la danh sml lun.
Tổng 2 số: 30*2=60
Số thứ 1: 60/(4+1)*4=48
Số thứ 2: 60-48=12
Vậy St1=48, St2=12
Tổng 2 số là :
30 x 2 = 60
Ta có sơ đồ :
St1 :|___|___|___|___| tổng : 60
St2 :|___|
Tổng số phần bằng nhau là :
4 + 1 = 5 (phần)
St1 là :
60 : 5 x 4 = 48
St2 là :
60 - 48 = 12
Đ/S : st1 : 48
st2 : 12
Cho ti le ban do 1:100.000,san truong co dien h. 36m2. Vay dt that cua san truong bao nhieu?
giup minh cau nay voi
`1)\sqrt{50}-3\sqrt{8}+\sqrt{32}=5\sqrt{2}-6\sqrt{2}+4\sqrt{2}=3\sqrt{2}`
`2)`
`a)\sqrt{x^2-4x+4}=1`
`<=>\sqrt(x-2)^2}=1`
`<=>|x-2|=1`
`<=>[(x-2=1),(x-2=-1):}<=>[(x=3),(x=1):}`
`b)\sqrt{x^2-3x}-\sqrt{x-3}=0` `ĐK: x >= 3`
`<=>\sqrt{x}\sqrt{x-3}-\sqrt{x-3}=0`
`<=>\sqrt{x-3}(\sqrt{x}-1)=0`
`<=>[(\sqrt{x-3}=0),(\sqrt{x}-1=0):}`
`<=>[(x-3=0),(\sqrt{x}=1):}<=>[(x=3(t//m)),(x=1(ko t//m)):}`
giup minh cau nay voi
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1x_2=-\dfrac{7}{2}\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\dfrac{37}{4}\)
\(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\dfrac{153}{8}\)
\(C=x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2=\dfrac{977}{16}\)
\(D=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\dfrac{\sqrt{65}}{2}\)
\(E=\left(2x_1+x_2\right)\left(2x_2+x_1\right)=2\left(x_1^2+x_2^2\right)+5x_1x_2=1\)
giup minh cau nay voi
`a,` Đthang đi qua `A(3, 12)`.
`-> x = 3, y = 12 in y`.
`<=> 12 = 9a.`
`<=> a = 12/9 = 4/3.`
`b,` Đthang đi qua `B(-2;3)`.
`=> x = -2, y = 3 in y`.
`<=> 3=4a`.
`<=> a = 3/4`.
giup minh cau nay voi
`3x^2+10x+3=0`
Ptr có: `\Delta'=5^2-3.3=16 > 0`
`=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-10/3),(x_1 .x_2=c/a=1):}`
~~~~~~~~~~~~~
`A=x_1 ^2+x_2 ^2`
`A=(x_1+x_2)^2-2x_1 .x_2`
`A=(-10/3)^2-2.1=82/9`
_______________________________________________________
`B=x_1 ^3+x_2 ^3`
`B=(x_1+x_2)(x_1 ^2-x_1 .x_2+x_2 ^2)`
`B=(x_1+x_2)[(x_1+x_2)^2 -3x_1 .x_2]`
`B=(-10/3).[(-10/3)^2-3.1]=-730/27`
_______________________________________________________
`C=x_1 ^4+x_2 ^4`
`C=(x_1 ^2+x_2 ^2)^2 -2x_1 ^2 .x_2 ^2`
`C=[(x_1+x_2)^2-2x_1 .x_2]^2-2(x_1 .x_2)^2`
`C=[(-10/3)^2-2.1]^2-2. 1^2=6562/81`
_______________________________________________________
`D=|x_1-x_2|`
`D=\sqrt{(x_1-x_2)^2}`
`D=\sqrt{(x_1+x_2)^2-4x_1.x_2}`
`D=\sqrt{(-10/3)^2-4.1}=8/3`
_______________________________________________________
`E=(2x_1+x_2)(2x_2+x_1)`
`E=4x_1 .x_2+2x_1 ^2+2x_2 ^2+x_1 .x_2`
`E=5x_1 . x_2+2(x_1+x_2)^2-4x_1 .x_2`
`E=x_1 .x_2+2(x_1+x_2)^2`
`E=1+2(-10/3)^2=209/9`
giup minh cau nay voi
`a)` Thay `x=-3` vào ptr có:
`(-3)^2-6.(-3)+2m+1=0`
`<=>9+18+2m+1=0`
`<=>m=-14`
`b)` Ptr có: `\Delta'=(-3)^2-(2m+1)=9-2m-1=8-2m`
Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`
`<=>8-2m > 0<=>m < 4`
`c)` Ptr có nghiệm kép `<=>\Delta' =0`
`<=>8-2m=0<=>m=4`
GIUP MINH CAU NAY VOI
\(A=\dfrac{\sqrt{x}+1+1}{\sqrt{x}+1}=1+\dfrac{1}{\sqrt{x}+1}>=1>0\)
=>A>|A|
Ta có: A= \(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)= \(1+\dfrac{1}{\sqrt{x}+1}\)
Vì x ≥0⇒\(\sqrt{x}\) ≥0⇒\(\sqrt{x}+1 \)≥ 1 ⇒ \(1+\dfrac{1}{\sqrt{x}+1}\)≥ 2
hay A≥ 2>0
Khi đó ta có: A=|A|
Vậy A=|A|