lim x → 1 + x 2 - x + 3 2 x - 1 bằng:
Tìm giới hạn hàm số Lim x->4 1-x/(x-4)^2 Lim x->3+ 2x-1/x-3 Lim x->2+ -2x+1/x+2 Lim x->1- 3x-1/x+1
1: \(\lim\limits_{x\rightarrow4}\dfrac{1-x}{\left(x-4\right)^2}=-\infty\)
vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow4}1-x=1-4=-3< 0\\\lim\limits_{x\rightarrow4}\left(x-4\right)^2=\left(4-4\right)^2=0\end{matrix}\right.\)
2: \(\lim\limits_{x\rightarrow3^+}\dfrac{2x-1}{x-3}=+\infty\)
vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow3^+}2x-1=2\cdot3-1=5>0\\\lim\limits_{x\rightarrow3^+}x-3=3-3>0\end{matrix}\right.\) và x-3>0
3: \(\lim\limits_{x\rightarrow2^+}\dfrac{-2x+1}{x+2}\)
\(=\dfrac{-2\cdot2+1}{2+2}=\dfrac{-3}{4}\)
4: \(\lim\limits_{x\rightarrow1^-}\dfrac{3x-1}{x+1}=\dfrac{3\cdot1-1}{1+1}=\dfrac{2}{2}=1\)
Tìm các giới hạn sau
1. lim ( x đến 1) \(\dfrac{\sqrt{2x+7}-3}{2-\sqrt{x+3}}\)
2. lim ( x đến 1-) \(\dfrac{2x-3}{1-x}\)
3. lim ( x đến 2+) \(\dfrac{x-3}{2-x}\)
4. lim ( x đến +-∞) \(\dfrac{-8x^3+9x^2+x-1}{5x^2+1}\)
5. lim ( x đến -∞) \(\dfrac{\sqrt{x^2}-x-1+3x}{2x+7}\)
1/ \(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+7-9\right)\left(2+\sqrt{x+3}\right)}{\left(4-x-3\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{2\left(x-1\right)\left(2+\sqrt{x+3}\right)}{\left(x-1\right)\left(-\sqrt{2x+7}-3\right)}=\dfrac{2.4}{-6}=-\dfrac{4}{3}\)
2/ \(=\lim\limits_{x\rightarrow1^-}\dfrac{2.1-3}{1-1}=-\infty\)
3/ \(=\lim\limits_{x\rightarrow2^+}\dfrac{3-x}{x-2}=+\infty\)
4/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{-\dfrac{8x^3}{x^2}+\dfrac{9x^2}{x^2}+\dfrac{x}{x^2}-\dfrac{1}{x^2}}{\dfrac{5x^2}{x^2}+\dfrac{1}{x^2}}=\lim\limits_{x\rightarrow\pm\infty}\dfrac{-8x}{5}=\pm\infty\)
5/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}}+\dfrac{2x}{x}-\dfrac{1}{x}}{\dfrac{2x}{x}+\dfrac{7}{x}}=\dfrac{1}{2}\)
a. Lim x->3 x^3-27/3x^2-5x-2 b. Lim x->2 căn bậc hai (x+2)-2/4x^2-3x-2 c. Lim x->1 1-x^2/x^2-5x+4 d. Lim x->1 căn bậc ba (x+7)/x^3+27+1
a. \(lim_{x\rightarrow3}\dfrac{x^3-27}{3x^2-5x-2}=\dfrac{3^3-27}{3.3^2-5.3-2}=\dfrac{0}{10}=0\)
b. \(lim_{x\rightarrow2}\dfrac{\sqrt{x+2}-2}{4x^2-3x-2}=\dfrac{\sqrt{2+2}-2}{4.2^2-3.2-2}=\dfrac{0}{8}=0\)
c. \(lim_{x\rightarrow1}\dfrac{1-x^2}{x^2-5x+4}=lim_{x\rightarrow1}\dfrac{\left(1-x\right)\left(x+1\right)}{\left(x-1\right)\left(x-4\right)}=lim_{x\rightarrow1}\dfrac{-\left(x+1\right)}{x-4}=\dfrac{-\left(1+1\right)}{1-4}=\dfrac{2}{3}\)
d. Câu này mình chịu, nhìn đề hơi lạ so với bình thường hehe
\(\lim\limits_{x\rightarrow0^-}\left(\dfrac{1}{x^2}-\dfrac{2}{x^3}\right)\)
\(\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x^3-x^2}}{\sqrt{x-1}+1-x}\)
\(\lim\limits_{x\rightarrow1^+}\dfrac{1}{x^3-1}-\dfrac{1}{x-1}\)
\(\lim\limits_{x\rightarrow-\infty}\left(x-\sqrt[3]{1-x^3}\right)\)
1/ \(\lim\limits_{x\rightarrow0^-}\left(\dfrac{x-2}{x^3}\right)=\lim\limits_{x\rightarrow0^-}\dfrac{2-x}{-x^3}=\dfrac{2}{0}=+\infty\)
2/ \(\lim\limits_{x\rightarrow1^+}\dfrac{\left(x^3-x^2\right)^{\dfrac{1}{2}}}{\left(x-1\right)^{\dfrac{1}{2}}+1-x}=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{1}{2}\left(x^3-x^2\right)^{-\dfrac{1}{2}}.\left(3x^2-2x\right)}{\dfrac{1}{2}\left(x-1\right)^{-\dfrac{1}{2}}-1}=0\)
3/ \(\lim\limits_{x\rightarrow1^+}\dfrac{1-\left(x^2+x+1\right)}{x^3-1}=\dfrac{1-3}{0}=-\infty\)
4/ \(\lim\limits_{x\rightarrow-\infty}\left(-\infty-\sqrt[3]{1+\infty}\right)=-\left(\infty+\infty\right)=-\infty?\) Cái này ko chắc :v
1) lim\(\dfrac{3x-5}{\left(x-2\right)^2}\)(x-->2)
2) lim\(\dfrac{2x-7}{x-1}\)(x-->1-)
3) lim\(\dfrac{2x-7}{x-1}\)(x-->1+)
1.
Do \(\lim\limits_{x\rightarrow2}\left(3x-5\right)=1>0\)
\(\lim\limits_{x\rightarrow2}\left(x-2\right)^2=0\)
\(\left(x-2\right)^2>0;\forall x\ne2\)
\(\Rightarrow\lim\limits_{x\rightarrow2}\dfrac{3x-5}{\left(x-2\right)^2}=+\infty\)
2.
\(\lim\limits_{x\rightarrow1^-}\left(2x-7\right)=-5< 0\)
\(\lim\limits_{x\rightarrow1^-}\left(x-1\right)=0\)
\(x-1< 0;\forall x< 1\)
\(\Rightarrow\lim\limits_{x\rightarrow1^-}\dfrac{2x-7}{x-1}=+\infty\)
3.
\(\lim\limits_{x\rightarrow1^+}\left(2x-7\right)=-5< 0\)
\(\lim\limits_{x\rightarrow1^+}\left(x-1\right)=0\)
\(x-1>0;\forall x>1\)
\(\Rightarrow\lim\limits_{x\rightarrow1^+}\dfrac{2x-7}{x-1}=-\infty\)
\(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x-2}-\dfrac{12}{x^3-8}\right)\)
\(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}\right)\)
\(\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{x^2+1}-x\right)\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-\sqrt[3]{x^3-1}\right)\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}\)
Em là tám lại ạ
Em là duy khôi ạ
Em là văn tam ạ
Em là mạnh Tuấn ạ
a: \(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x-2}-\dfrac{12}{x^3-8}\right)\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+2x+4-12}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+2x-8}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x+4}{x^2+2x+4}\)
\(=\dfrac{2+4}{2^2+2\cdot2+4}=\dfrac{6}{4+4+4}=\dfrac{6}{12}=\dfrac{1}{2}\)
b: \(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}\right)\)
\(=\lim\limits_{x\rightarrow2}\left(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\lim\limits_{x\rightarrow2}\left(\dfrac{x-3+x-1}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\right)\)
\(=\lim\limits_{x\rightarrow2}\dfrac{2x-4}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{2}{\left(x-3\right)\left(x-1\right)}=\dfrac{2}{\left(2-3\right)\left(2-1\right)}=-2\)
d: \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-\sqrt[3]{x^3-1}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-x+x-\sqrt[3]{x^3-1}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+1-x^2}{\sqrt{x^2+1}+x}+\dfrac{x^3-x^3+1}{\sqrt[3]{x^2}+x\cdot\sqrt[3]{x^3-1}+\sqrt[3]{\left(x^3-1\right)^2}}\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{x^2+1}+x}+\dfrac{1}{\sqrt[3]{x^2}+x\cdot\sqrt[3]{x^3-1}+\sqrt[3]{\left(x^3-1\right)^2}}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\dfrac{1}{x}}{\sqrt{1+\dfrac{1}{x^2}}+1}+\dfrac{\dfrac{1}{x^2}}{\sqrt[3]{\dfrac{1}{x^4}}+\sqrt[3]{1-\dfrac{1}{x^3}}+\sqrt[3]{\left(1-\dfrac{1}{x^3}\right)^2}}\right)\)
=0
c: \(\lim\limits_{x\rightarrow+\infty}\left[x\cdot\left(\sqrt{x^2+1}-x\right)\right]\)
\(=\lim\limits_{x\rightarrow+\infty}\left[x\cdot\dfrac{x^2+1-x^2}{\sqrt{x^2+1}+x}\right]\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{x}{\sqrt{x^2+1}+x}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)
e: \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{x^2+1-1}{\sqrt{x^2+1}+1}:\dfrac{x^2+16-16}{\sqrt{x^2+16}+4}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+16}+4}{\sqrt{x^2+1}+1}=\dfrac{4+4}{1+1}=\dfrac{8}{2}=4\)
Tìm các giới hạn sau :
a, lim\(\dfrac{2x^2+x-6}{x^3+8}\) khi x→-2
b, lim\(\dfrac{x^4-x^2-72}{x^2-2x-3}\) khi x→3
c, lim\(\dfrac{x^5+1}{x^3+1}\) khi x→-1
d, lim \(\left(\dfrac{2}{x^2-1}-\dfrac{1}{x-1}\right)\) khi x→1
a) \(\lim\limits_{x\rightarrow-2}\dfrac{2x^2+x-6}{x^3+8}=\lim\limits_{x\rightarrow-2}\dfrac{\left(2x-3\right)\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\\ =\lim\limits_{x\rightarrow-2}\dfrac{2x-3}{x^2-2x+4}=-\dfrac{7}{12}\).
b) \(\lim\limits_{x\rightarrow3}\dfrac{x^4-x^2-72}{x^2-2x-3}=\lim\limits_{x\rightarrow3}\dfrac{\left(x^2+8\right)\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\\ =\lim\limits_{x\rightarrow3}\dfrac{\left(x^2+8\right)\left(x+3\right)}{x+1}=\dfrac{51}{2}\).
c) \(\lim\limits_{x\rightarrow-1}\dfrac{x^5+1}{x^3+1}=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\lim\limits_{x\rightarrow-1}\dfrac{x^4-x^3+x^2-x+1}{x^2-x+1}=\dfrac{5}{3}\).
d) \(\lim\limits_{x\rightarrow1}\left(\dfrac{2}{x^2-1}-\dfrac{1}{x-1}\right)=\lim\limits_{x\rightarrow1}\left(\dfrac{2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\right)\\ =\lim\limits_{x\rightarrow1}\dfrac{1-x}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{-1}{x+1}=-\dfrac{1}{2}\).
Tìm giới hạn
1) \(\xrightarrow[x->3]{lim}\dfrac{x^2-5x+6}{\sqrt{2x+3}-\sqrt{4x-3}}\)
2) \(\xrightarrow[x->1]{lim}\dfrac{\sqrt{x^2+2}-\sqrt{4x-1}}{x-1}\)
3) \(\xrightarrow[x->-1]{lim}\dfrac{x-2}{x\left|x+1\right|}\)
4) \(\xrightarrow[x->a]{lim}\dfrac{x^n-a^n}{x-a}\)
5) \(\xrightarrow[x->1]{lim}(\dfrac{n}{1-x^n}-\dfrac{1}{1-x})\)
6) \(\xrightarrow[x->1]{lim}\dfrac{x^n-nx+n-1}{\left(x-1\right)^2}\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x+1}-\sqrt[3]{2x^3+x-1}\right)\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{4x^2+x+1}-2x\right)\)
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+x^2+1}+\sqrt{x^2+x+1}\right)\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x+1}-2\sqrt{x^2-x}+x\right)\)
\(\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{x^2+2x}-2\sqrt{x^2+x}+x\right)\)
1/ \(=\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}-\sqrt[3]{\dfrac{2x^3}{x^3}+\dfrac{x}{x^3}-\dfrac{1}{x^3}}\right)=x\left(1-\sqrt[3]{2}\right)=-\infty\)
2/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{4x^2+x+1-4x^2}{\sqrt{4x^2+x+1}+2x}=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}+\dfrac{1}{x}}{\sqrt{\dfrac{4x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}+\dfrac{2x}{x}}=\dfrac{1}{2+2}=\dfrac{1}{4}\)
3/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^3+x^2+1-x^3}{\left(\sqrt[3]{x^3+x^2+1}\right)^2+x.\sqrt[3]{x^3+x^2+1}+x^2}+\dfrac{x^2+x+1-x^2}{\sqrt{x^2+x+1}-x}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}{\dfrac{\left(\sqrt[3]{x^3+x^2+1}\right)^2}{x^2}+\dfrac{x}{x^2}\sqrt[3]{x^3+x^2+1}+\dfrac{x^2}{x^2}}+\dfrac{\dfrac{x}{x}+\dfrac{1}{x}}{-\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}-\dfrac{x}{x}}=\dfrac{1}{3}-\dfrac{1}{2}=-\dfrac{1}{6}\)
4/ \(=\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x+1}-x\right)+\lim\limits_{x\rightarrow+\infty}2\left(x-\sqrt{x^2-x}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+x+1-x^2}{\sqrt{x^2+x+1}+x}+\lim\limits_{x\rightarrow+\infty}2.\dfrac{x^2-x^2+x}{x+\sqrt{x^2-x}}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}+\dfrac{1}{x}}{\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}+\dfrac{x}{x}}+\lim\limits_{x\rightarrow+\infty}2.\dfrac{\dfrac{x}{x}}{\dfrac{x}{x}+\sqrt{\dfrac{x^2}{x^2}-\dfrac{x}{x^2}}}=\dfrac{1}{2}+\dfrac{2}{2}=\dfrac{3}{2}\)
5/ \(=\lim\limits_{x\rightarrow+\infty}x.\left(\dfrac{x^2+2x-x^2}{\sqrt{x^2+2x}+x}+2.\dfrac{x^2-x^2+x}{\sqrt{x^2-x}+x}\right)=+\infty\)
a) lim ( \(\sqrt{x^2-x+1}-\sqrt{x^2+x+1}\)
x-> +∞
b) lim \(\dfrac{\sqrt{4x+1}-3}{x^2-4}\)
x-> 2
c) lim \(\dfrac{\sqrt{2x+5}-1}{x^2-4}\)
x-> -2
a/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-x+1-x^2-x-1}{\sqrt{x^2-x+1}+\sqrt{x^2+x+1}}=\lim\limits_{x\rightarrow+\infty}\dfrac{-\dfrac{2x}{x}}{\sqrt{\dfrac{x^2}{x^2}-\dfrac{x}{x^2}+\dfrac{1}{x^2}}+\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}}=-\dfrac{2}{1+1}=-1\)
b/ \(=\lim\limits_{x\rightarrow2}\dfrac{4x+1-9}{\left(x-2\right)\left(x+2\right)\left(\sqrt{4x+1}+3\right)}=\lim\limits_{x\rightarrow2}\dfrac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)\left(\sqrt{4x+1}+3\right)}=\lim\limits_{x\rightarrow2}\dfrac{4}{\left(x+2\right)\left(\sqrt{4x+1}+3\right)}=\dfrac{4}{\left(2+2\right)\left(\sqrt{4.2+1}+3\right)}=\dfrac{1}{6}\)
c/ \(=\lim\limits_{x\rightarrow-2}\dfrac{2x+5-1}{\left(x-2\right)\left(x+2\right)\left(\sqrt{2x+5}+1\right)}=\lim\limits_{x\rightarrow-2}\dfrac{2}{\left(x-2\right)\left(\sqrt{2x+5}+1\right)}=\dfrac{2}{\left(-2-2\right)\left(\sqrt[2]{2.\left(-2\right)+5}+1\right)}=\dfrac{2}{\left(-4\right).2}=-\dfrac{1}{4}\)