Phương trình x + 2 x 2 + 4 x + 7 + 1 + x x 2 + 3 + 1 có bao nhiêu nghiệm dương?
A. 0
B. 1
C. 2
D. 3
giải phương trình |x+1|+|x-1|=1+|x^2-1|giải phương trình |x+1|+|x-1|=1+|x^2-1|giải phương trình |x+1|+|x-1|=1+|x^2-1|giải phương trình |x+1|+|x-1|=1+|x^2-1|giải phương trình |x+1|+|x-1|=1+|x^2-1|
ta có :
\(\left|x+1\right|+\left|x-1\right|=1+\left|\left(x-1\right)\left(x+1\right)\right|\)
\(\Leftrightarrow\left|x-1\right|\left|x+1\right|-\left|x-1\right|-\left|x+1\right|+1=0\)
\(\Leftrightarrow\left(\left|x-1\right|-1\right)\left(\left|x+1\right|-1\right)=0\Leftrightarrow\orbr{\begin{cases}\left|x-1\right|=1\\\left|x+1\right|=1\end{cases}}\)
\(\Leftrightarrow x\in\left\{-2,0,2\right\}\)
Cho 2 phương trình : \(x^2\) - 5x + 6 = 0 (1)
x + (x - 2) (2x +1)= 2 (2)
a) CMR : phương trình có nghiệm chung x = 2.
b) Chứng tỏ x = 3 là nghiệm của phương trình (1) nhưng không là nghiệm của phương trình (2).
c) 2 phương trình trên có tương đương nhau không.
Câu 1 : Trong các phương trình sau phương trình nào là phương trình bậc nhất một ẩn ;
A/ x-1=x+2 B/(x-1)(x-2)=0 C/ax+b=0 D/ 2x+1=3x+5
Câu 2 : x=-2 là nghiệm của phương trình nào ?
A/3x-1=x-5 B/ 2x-1=x+3 C/x-3=x-2 D/ 3x+5 =-x-2
Câu 3 : x=4 là nghiệm của phương trình
A/3x-1=x-5 B/ 2x-1=x+3 C/x-3=x-2 D/ 3x+5 =-x-2
Câu 4 :Phương trình x+9=9+x có tập nghiệm là :
A/ S=R B/S={9} C/ S= D/ S= {R}
Câu 5 : Cho hai phương trình : x(x-1) (I) và 3x-3=0(II)
A/ (I)tương đương (II) B/ (I) là hệ quả của phương trình (II)
C/ (II) là hệ quả của phương trình (I) D/ Cả ba đều sai
Câu 6:Phương trình : x2 =-4 có nghiệm là :
A/ Một nghiệm x=2 B/ Một nghiệm x=-2
C/ Có hai nghiệm : x=-2; x=2 D/ Vô nghiệ
Câu 1: D
Câu 2: A
Câu 3: B
Câu 4: A
Câu 5: C
Câu 6: D
Giải phương trình và biện luận phương trình, cho biết phương trình ẩn x:
m^2*x= m*(x+2)-2
\(m^2x=m\cdot\left(x+2\right)-2\)
\(\Leftrightarrow x\left(m^2-m\right)-2m+2=0\)
*Nếu m=1 <=> m^2 - m = 0 \(\Leftrightarrow-2.1+2=0\left(Đ\right)\)
=> Với m =1 thì pt thỏa mãn với mọi x thuộc R
*Nếu \(m\ne1\Leftrightarrow x=\frac{2m-2}{m^2-m}\)
=> Với \(m\ne1\text{ thì }x=\frac{2m-2}{m^2-m}\)
Vậy ....
giải phương trình và bất phương trình
/x-5/=2x
(x-2)^2+2(x-1)<=x^2+4
\(\left|x-5\right|=2x\)ĐK : x>=0
TH1 : x - 5 = 2x <=> x = -5 ( loại )
TH2 : x - 5 = -2x <=> 3x = 5 <=> x = 5/3 ( tm )
Vậy tập nghiệm pt là S = { 5/3 }
\(\left(x-2\right)^2+2\left(x-1\right)\le x^2+4\)
\(\Leftrightarrow x^2-4x+4+2x-2-x^2-4\le0\)
\(\Leftrightarrow-2x-2\le0\Leftrightarrow x+1\ge0\Leftrightarrow x\ge-1\)
Vậy tập nghiệm bft là S = { x | x > = -1 }
Ta có: \(\left|x-5\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=2x\left(x\ge5\right)\\x-5=-2x\left(x< 5\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2x=5\\x+2x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=5\\3x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(loại\right)\\x=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)
Cho hai phương trình \(\sqrt{x-6}\)+ x3-6x2+x-6=0(1) và \(\dfrac{x^2-2\left(m+1\right)x+6m-2}{\sqrt{x-2}}\)=\(\sqrt{x-2}\)(2) (m là tham số). Số các giá trị của tham số m để phương trình (2) là phương trình hệ quả của phương trình (1).
A.0 B.1 C.2 D.3
Cho phương trình : x^2 + x-3m+2=0
a, Gỉai phương trình khi m=1 .
b, Tìm m để phương trình có nghiệm x=2.
c, Tìm m để phương trình có 2 nghiệm phân biệt .
d, Tìm m để phương trình có nghiệm kép.
e, Tìm m để phương trình vô nghiệm
a, Với m=1 thay vào pt
Ta có
\(x^2+x-1=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
b,
Thay x=2 vào pt
ta có
\(4-2-3m+2=0\)
\(\Leftrightarrow4-3m=0\)
\(\Rightarrow m=\dfrac{4}{3}\)
c, Ta có
\(\Delta=1-4\left(-3m+2\right)\)
\(=12m-7\)
Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\Rightarrow12m-7>0\)
\(\Rightarrow m>\dfrac{7}{12}\)
d,
Để ptcos nghiệm kép thì \(\Delta=0\)
\(\Rightarrow12m-7=0\)
\(\Rightarrow m=\dfrac{7}{12}\)
e,
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Rightarrow m< \dfrac{7}{12}\)
Cho phương trình: x\(^2\) + 2(m+2)x - (4m+12) = 0
a)Chứng minh rằng phương trình luôn có nghiệm với mọi m
b)Xác định m để phương trình có 2 nghiệm x\(_1\), x\(_2\) thoả mãn x\(_1\)=x\(_2\)\(^2\)
a,Có \(\Delta=4\left(m+2\right)^2-4.-\left(4m+12\right)=4m^2+32m+64=4\left(m+4\right)^2\ge0\forall m\)
=> Phương trình luôn có nghiệm với mọi m
b,Phương trình có nghiệm \(\left[{}\begin{matrix}x=\dfrac{-2\left(m+2\right)+2\left(m+4\right)}{2}=2\\x=\dfrac{-2\left(m+2\right)-2\left(m+4\right)}{2}=-2m-6\end{matrix}\right.\) (ở đây không cần chia trường hợp của m bởi khi chia trường hợp thì x chỉ đổi giá trị cho nhau)
TH1: \(x_1=x_2^2\Leftrightarrow4=\left(-2m-6\right)^2\)\(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=-4\end{matrix}\right.\) (Thay vào pt thấy không thỏa mãn)
TH2:\(x_1=x_2^2\Leftrightarrow-2m-6=2^2\)\(\Leftrightarrow m=-5\) (Thay vào pt thấy thỏa mãn)
Vậy ...
Câu 1 : Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn:
A. x2 - 2 = 0
B. \(\dfrac{1}{2}\)x - 3 = 0
C. \(\dfrac{1}{x}\) - 2x = 0
D. (22 - 4)x + 3 = 0 .
Câu 2 : Điều kiện xác định của phương trình \(\dfrac{x-2}{x+1}\) = \(\dfrac{2x+3}{x}\) là :
A. x ≠ 1
B. x ≠ -1
C. x ≠ 0, x ≠ 1
D. x ≠ 0, x ≠ -1
Câu 3 : Cặp phương trình nào tương đương là:
A. x + 4 = 0 và x = -4
B. (x – 5)(x + 5) = 0 và x2 = 5
C. x2 = 9 và x = 9
D. x2 + 3 = 0 và x = 3
Câu 4 : Cho ΔABC ∽ ΔDEF theo tỉ số đồng dạng là \(\dfrac{2}{3}\).
Khi đó ΔDEF ∽ ΔABC theo tỉ số đồng dạng là:
A.\(\dfrac{3}{2}\)
B.\(\dfrac{9}{4}\)
C.\(\dfrac{4}{9}\)
D.\(\dfrac{2}{3}\)
Câu 5 : Cho tam giác ABC có: DE / /BC, AD = 6cm, AB = 9cm, AC = 12cm. Độ dài AE = ?
A. AE = 6cm
B. AE = 8cm
C. AE = 10cm
D. AE = 12cm
Câu 6 (TL) : Cho biểu thức A = \(\dfrac{x+2}{3}\) và B = \(\dfrac{2x}{x-3}\) - \(\dfrac{2x^2+3x+9}{x^2-9}\) với x ≠ 3; x ≠ -3
a) Tính giá trị của A tại x = 14
b) Rút gọn biểu thức P = A.B
Câu 7 (TL) : Cho ΔABC vuông tại B (BA < BC), đường cao BH.
a) Chứng minh: ΔABC ∽ ΔBHC
b) Tia phân giác của góc BAC cắt BH tại D. Biết AH = 6cm, AB = 10cm. Tính BH, AD?
c) Tia phân giác của góc HBC cắt AC tại M. Chứng minh: \(\dfrac{HD}{DB}\)=\(\dfrac{HM}{MC}\)
Mọi người giúp em với ạ (làm đc câu nào thì làm ạ làm tự luận hình thì càng tốt ạ)
1B
2D
3A
4A
5B
6:
a: \(A=\dfrac{14+2}{3}=\dfrac{16}{3}\)
b: P=A*B
\(=\dfrac{x+2}{3}\cdot\dfrac{2x^2+6x-2x^2-3x-9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x+2}{3}\cdot\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+2}{x+3}\)
Cho phương trình x^2 - 2 (m-1) x+m-3=0
1, Giải phương trình với m=-2
2, Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt
3, Tìm m để phương trình có 2 nghiệm trái dấu
4, Tìm m để phương trình có 2 nghiệm dương phân biệt
5, Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn x12+x22=10
6, Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn x1+2x2=0