Tìm công thức số hạng tổng quát u n biết u 1 = 1 ; , u n = u n u n + 2 , ∀ n ∈ N ∗
A. u n = 1 2 n + 1
B. u n = 2 n − 1
C. u n = 2 n + 1
D. u n = 1 2 n - 1
Tìm công thức số hạng tổng quát ( u n ) biết u 1 = 1 ; u n = u n u n + 2 , ∀ n ∈ N *
A. u n = 1 2 n + 1
B. u n = 1 2 n - 1
C. u n = 2 n - 1
D. u n = 2 n + 1
Đáp án B
Ta có u n = u n u n + 2
⇔ 1 u n = u n + 2 u n = 1 + 2 u n
Đặt v n = 1 u n ⇒ v 1 = 1 v n = 1 + 2 v n - 1
⇒ v n = 2 n - 1 ⇒ u n = 1 2 n - 1
Tìm công thức số hạng tổng quát u n biết u 1 = 1 ; u n = u n u n + 2 , ∀ n ∈ N * .
A. u n = 1 2 n + 1
B. u n = 1 2 n - 1
C. u n = 2 n - 1
D. u n = 2 n + 1
Tìm công thức của số hạng tổng quát của các dãy u n biết: u 1 = 11 u n + 1 = 10 u n + 1 - 9 n , n ≥ 1
A. 10 n
B. 10 n + n
C. 10 n - 1
D. Tất cả sai
Cho dãy số biết :
với
Viết năm số hạng đầu và tìm công thức tính số hạng tổng quát un theo n
u1=-1
u2=-1+3=2
u3=2+3=5
u4=5+3=8
u5=8+3=11
Công thức tổng quát là: \(U_n=U_1+\left(n-1\right)\cdot\left(3\right)=-1+3n-3=3n-4\)
Tìm công thức của số hạng tổng quát của các dãy u n biết: u 1 = 5 u n + 1 = u n + 3 n - 2 , n ≥ 1
A. u n = 3 n 2 - 17 n + 4 2
B. u n = 1 - n
C. u n = 1 - 3 n 2 - 17 n + 4 2
D. Tất cả sai
Tìm công thức của số hạng tổng quát của các dãy u n sau, biết: u 1 = 1 u n + 1 = u n 1 + u n , n ≥ 1
A. 2 n
B. 0 , 5 n - 1
C. 1 n
D. Tất cả sai
Cho dãy số (un) biết u1 = 3; \(u_{n+1}=\sqrt{1+u_n^2}\) với \(n\ge1\). Tìm công thức của số hạng tổng quát un
\(u_{n+1}=\sqrt{1+u_n^2}\left(1\right)\)
\(u_1=3=\sqrt{9}\)
\(u_2=\sqrt{1+u_1^2}=\sqrt{10}\)
\(u_3=\sqrt{1+u_2^2}=\sqrt{11}\)
...
Dự đoán công thức:\(u_n=\sqrt{n+8}\),\(n\ge1\) (*)
Thật vậy
+)\(n=1,(*)\)\(\Leftrightarrow u_1=3\) (lđ)
+)Giả sử (*) đúng với mọi \(n=k,k>1\)
\((*)\Leftrightarrow u_k=\sqrt{k+8}\)
+)\(n=k+1,\) thay vào (1) có: \(u_{k+2}=\sqrt{1+u^2_{k+1}}=\sqrt{1+\left(\sqrt{1+u_k^2}\right)^2}=\sqrt{2+u^2_k}=\sqrt{2+k+8}=\sqrt{10+k}\)
\(\Rightarrow\)(*) đúng với n=k+1
Vậy CTSHTQ: \(u_n=\sqrt{n+8}\), \(n\ge1\)
Tìm công thức của số hạng tổng quát của dãy biết:
\(\left\{{}\begin{matrix}u_{n+1}=\sqrt{u_n+1}\\u_1=1\end{matrix}\right.\)
Cho dãy số (un), biết u1= 2, un+1= \(\dfrac{2017+u_n}{2019-u_n},n\ge1\) . Xác định công thức số hạng tổng quát un và tìm limun
Đặt \(u_n=v_n+1\Rightarrow v_{n+1}+1=\dfrac{2017+v_n+1}{2019-\left(v_n+1\right)}=\dfrac{2018+v_n}{2018-v_n}\)
\(\Rightarrow v_{n+1}=\dfrac{2018+v_n}{2018-v_n}-1=\dfrac{2v_n}{2018-v_n}\Rightarrow\dfrac{1}{v_{n+1}}=1009\dfrac{1}{v_n}-\dfrac{1}{2}\)
Đặt \(\dfrac{1}{v_n}=x_n\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{v_1}=\dfrac{1}{u_1-1}=1\\x_{n+1}=1009x_n-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow x_{n+1}-\dfrac{1}{2016}=1009\left(x_n-\dfrac{1}{2016}\right)\)
\(\Rightarrow x_n-\dfrac{1}{2016}\) là CSN với công bội 1009 \(\Rightarrow x_n-\dfrac{1}{2016}=\dfrac{2015}{2016}.1009^{n-1}\)
\(\Rightarrow x_n=\dfrac{2015}{2016}1009^{n-1}+\dfrac{1}{2016}\)
\(\Rightarrow u_n=v_n+1=\dfrac{1}{x_n}+1=\dfrac{2016}{2015.1009^{n-1}+1}+1\)
\(\Rightarrow\lim\left(u_n\right)=1\)