Cho dãy số \(\left(u_n\right)\)thỏa mãn: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{2u_n}{u_n+4},n\ge1\end{matrix}\right.\)
Tìm công thức số hạng tổng quát của \(\left(u_n\right)\)
Cho dãy un xác định: \(\left\{{}\begin{matrix}u_1=\sqrt{2}\\u_{n+1}=\sqrt{2+u_n}\end{matrix}\right.\forall n\in N^{\cdot}\). Xác định số hạng tổng quát của dãy, xét tính tăng giảm của dãy đó.
\(\left\{{}\begin{matrix}u_1=0\\u_{n+1}=2u_n+\left(n+1\right).3^n\end{matrix}\right.\)
Tìm số hạng tổng quát \(\left(u_n\right)\)
Cho dãy số \(\left(u_n\right)\) xác định bởi: \(\left\{{}\begin{matrix}u_1=1;u_2=2\\u_{n+1}=\dfrac{u_n^2}{u_{n-1}}\end{matrix}\right.\) với \(n\ge2\)
a, Chứng minh dãy số \(\left(v_n\right):v_n=\dfrac{u_n}{u_{n-1}}\) là dãy số không đổi
b,Tìm công thức tổng quát của dãy số \(\left(u_n\right)\)
Cho dãy số xác định bởi: \(\left(u_n\right)\left\{{}\begin{matrix}u_1=\sqrt{2851}\\\left(u_{n+1}\right)^2=u_n^2+n\end{matrix}\right.\) , \(n\ge1,n\in N^{\cdot}\)
Số hạng thứ 2020 của dãy là bao nhiêu?
\(\left\{{}\begin{matrix}u_1=u_2=1\\u_n=u_{n-1}+u_{n-2}\end{matrix}\right.\forall n>2,n\in N^{sao}\)
Viết 5 số hạng đầu của dãy số \(u_n\)
Cho dãy số \(\left(u_n\right)\) xác định bởi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{u_n+1}{2}\end{matrix}\right.\) với \(n\ge1\)
a, Viết 4 số hạng đầu của dãy số
b, Chứng minh rằng \(u_n>1\) với \(n\ge1\)
c, Tìm CTTQ của dãy
Các dãy số \(\left(u_n\right),\left(v_n\right)\) được xác định bằng công thức :
a) \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=u_n+n^3,\left(n\ge1\right)\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}v_1=2\\v_{n+1}=v_n^2,n\ge1\end{matrix}\right.\)
Tìm công thức \(u_n,v_n\)theo \(n\). Tính số hạng thứ 100 của của dãy số \(\left(u_n\right)\)
Hỏi số 4 294 967 296 là số hạng thứ mấy của dãy số \(\left(v_n\right)\) ?
\(\left\{{}\begin{matrix}U_n=1\\U_{n+1}=U_n+\left(n-1\right)2^n\end{matrix}\right.\)
a) tìm công thức tổng quát
b) cm dãy sỗ tăng