Tìm m để pt có nghiệm sin(2x-3)=4m-5
Tìm m để PT: x2 - 2x + 4m + 5 = 0 có 2 nghiệm trái dấu thỏa mãn x1 = 3|x2|
Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\Leftrightarrow4m+5< 0\Rightarrow m< -\dfrac{5}{4}\)
\(x_1=3\left|x_2\right|>0\Rightarrow x_1>0\Rightarrow x_2< 0\Rightarrow3\left|x_2\right|=-3x_2\)
\(\Rightarrow x_1=-3x_2\)
Kết hợp với hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1=-3x_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1=3\\x_2=-1\end{matrix}\right.\)
Mà \(x_1x_2=4m+5\Rightarrow4m+5=-3\Rightarrow m=-2\)
3.Cho PT
x2- 2mx-4m-5=0
a) giải PT khi m=2
b) tìm m để pT có nghiệm
b: \(\text{Δ}=\left(-2m\right)^2-4\left(-4m-5\right)\)
\(=4m^2+16m+20\)
\(=4m^2+16m+16+4\)
\(=\left(2m+4\right)^2+4>0\forall m\)
Cho x^2-2x+4m+1=0 Tìm m để pt có nghiệm x =2 tìm nghiệm còn lại
Cho pt: x^2 -2(m-1)x +m^2 -4m +3 a) Tìm m để pt có 1 nghiệm là 5,tìm nghiệm còn lại b) Tìm hệ thức liên hệ giữa các nghiệm k phụ thuộc vào m c) Tìm để pt có 2 nghiệm x1 x2 thỏa mãn x1 -2x2 =1
a: Thay x=5 vào pt, ta được:
5^2-2(m-1)*5+m^2-4m+3=0
=>m^2-4m+3+25-10m+10=0
=>m^2-14m+38=0
=>(m-7)^2=11
=>\(m=\pm\sqrt{11}+7\)
b: x1+x2=2m-2
x1*x2=m^2-4m+3
(x1+x2)^2-4x1x2
=4m^2-8m+4-4m^2+4m-6
=-4m-2
(x1+x2)^2-4x1x2+2(x1+x2)
=-4m-2+4m-4=-6
Cho pt \(4m^2x-4x-3m=3\)
Tìm giá trị của m để pt có nghiệm dương
Tìm m để pt sau có 2 nghiệm phân biệt
\(2x^2-\left(4m+3\right)x+2m^2-1=0\)
2x^2 -(4m+3)x+2m^2-1=0
a= 2
b = -(4m+3)
c= 2m^2-1
Ta có: ∆=b^2-4ac
= 〖(4m+3)〗^2-4.2.(2m^2-1)
= 16m^2+24m+9-16m^2+8
= 24m +17
Để phương trình có 2 nghiệm phân biệt
=> ∆> 0 =>24m +17>0=> 24m > - 17=>m> (-17)/24Vậy để pt có 2 nghiệm phân biệt thì m > (-17)/24
https://www.youtube.com/watch?v=toNMfaR7_Ns
https://www.youtube.com/watch?v=toNMfaR7_Ns
Tìm m = ? để pt
a. 3(3x+1)( 3x - 4m^2 ) ( 3x- m) nhận x = -2 là nghiệm
b.( 2x - 1 ) ( 3x- 4m^2) + 4 ( x - 3) = 5 nhận x = -1 là nghiệm
: x^2 – 2( m- 1)x – 4m = 0 ( 3)
⦁ Tìm m để PT(3) có nghiệm
⦁ Tìm m để PT(3) có 2 nghiệm phân biệt
help voi mn
*, Để pt (3) có nghiệm
\(\Delta'=\left(m-1\right)^2-\left(-4m\right)=m^2+2m+1=\left(m+1\right)^2\ge0\)
Vậy pt luôn có 2 nghiệm x1 ; x2
*, \(\Delta'=\left(m+1\right)^2\ge0\)
Để pt có 2 nghiệm pb khi \(m+1\ne0\Leftrightarrow m\ne-1\)
Vậy với m khác -1 thì pt (3) luôn có 2 nghiệm pb
cho pt : \(m^2x=9x+m^2-4m+3\left(1\right)\)
a) tìm m để pt (1 ) có tập nghiệm là R
b) tìm m \(\in Z\) để pt (1) có duy nhất nghiệm và nghiệm đó là số nguyên
a) \(\left(1\right)\) \(\Leftrightarrow\) \(\left(m^2-9\right)x=m^2-4m+3\)\(=\left(m-1\right)\left(m-3\right)\)
Phương trình \(\left(1\right)\) có tập nghiệm là R
\(\Leftrightarrow\) \(m^2-9=\left(m-1\right)\left(m-3\right)=0\) \(\Leftrightarrow m=3\)
b) Phương trình có nghiệm duy nhất : \(\Leftrightarrow m^2-9\ne0\) \(\Leftrightarrow m\ne\pm3\)
Khi đó nghiệm của phương trình : \(x=\frac{m-1}{m-3}=1-\frac{4}{m+3}\)
Do đó \(x\in Z\) \(\Leftrightarrow\frac{4}{m+3}\in Z\) \(\Leftrightarrow m+3\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow m\in\left\{-7;-5;-4;-2;-1;1\right\}\)