Tìm các giới hạn sau: l i m 3 n 2 + n - 5 2 n 2 + 1
Cho hàm số \(f\left(x\right)=x^2-2x+3\) . Khẳng định nào sau đây là sai:
A, Hàm số có giới hạn trái và phải tại điểm x=1 bằng nhau
B, Hàm số có giới hạn trái và phải tại mọi điểm bằng nhau
C, Hàm số có giới hạn tại mọi điểm
D, Cả ba khẳng định trên là sai
Đáp án D sai
Hàm đa thức có giới hạn tại mọi điểm và tại tất cả các điểm thì giới hạn trái luôn bằng giới hạn phải
Em hãy cho biết giới hạn sinh thái là gi?
thế nào là giới hạn trên? giới hạn dưới?
thế nào là giới hạn chịu đựng?
giups mình với ạ
Tìm các giới hạn sau:
\(a,lim\left(3n-\sqrt{9n^2+1}\right)\)
\(b,lim\left(\sqrt[3]{n^3-2n^2}-n\right)\)
\(\lim\left(3n-\sqrt{9n^2+1}\right)=\lim\dfrac{-1}{3n+\sqrt{9n^2+1}}=\lim\dfrac{-\dfrac{1}{n}}{3+\sqrt{9+\dfrac{1}{n^2}}}=\dfrac{0}{3+3}=0\)
\(\lim\left(\sqrt[3]{n^3-2n^2}-n\right)=\lim\dfrac{-2n^2}{\sqrt[3]{\left(n^3-2n^2\right)^2}+n\sqrt[3]{n^3-2n^2}+n^2}\)
\(=\lim\dfrac{-2}{\sqrt[3]{\left(1-\dfrac{2}{n}\right)^2}+\sqrt[3]{1-\dfrac{2}{n}}+1}=\dfrac{-2}{1+1+1}=-\dfrac{2}{3}\)
Tìm các giới hạn sau:
\(a,lim\dfrac{\sqrt{n^2+n-1}-n}{2n+3}\)
\(b,lim\left(\sqrt[3]{n^3+1}+\sqrt{n^2+n}-2n\right)\)
\(\lim\dfrac{\sqrt{n^2+n-1}-n}{2n+3}=\lim\dfrac{n-1}{\left(2n+3\right)\left(\sqrt{n^2+n-1}+n\right)}\)
\(=\lim\dfrac{1-\dfrac{1}{n}}{\left(2+\dfrac{3}{n}\right)\left(\sqrt{n^2+n-1}+n\right)}=\dfrac{1}{2.+\infty}=0\)
Tìm các giới hạn sau:
\(a,lim\dfrac{\sqrt{n^2+n-1}-n}{2n+3}\)
\(b,lim\left(\sqrt[3]{n^3+1}+\sqrt{n^2+n}-2n\right)\)
a. ĐKXĐ: \(n\ne\dfrac{-3}{2}\); \(\left[{}\begin{matrix}x< \dfrac{-1-\sqrt{5}}{2}\\x>\dfrac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
\(lim_{n\rightarrow+\infty}\dfrac{\sqrt{n^2+n-1}-n}{2n+3}=\)\(lim_{n\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{n}-\dfrac{1}{n^2}}-1}{2+\dfrac{3}{n}}=0\)
\(b,lim\left(^3\sqrt{n^3+1}+\sqrt{n^2+n}-2n\right)\)
\(=limn\left(^3\sqrt{1+\dfrac{1}{n^3}}+\sqrt{1+\dfrac{1}{n}}-2\right)\)
\(=n\left(1+1-2\right)=0\)
\(\lim\left(\sqrt[3]{n^3+1}-n+\sqrt[]{n^2+n}-n\right)=\lim\left(\dfrac{1}{\sqrt[3]{\left(n^3+1\right)^2}+n\sqrt[3]{n^3+1}+n^2}+\dfrac{n}{\sqrt[]{n^2+n}+n}\right)\)
\(=\lim\left(\dfrac{1}{\sqrt[3]{\left(n^3+1\right)^2}+n\sqrt[3]{n^3+1}+n^2}+\dfrac{1}{\sqrt[]{1+\dfrac{1}{n}}+1}\right)=0+\dfrac{1}{2}=\dfrac{1}{2}\)
Tìm các giới hạn sau:
\(a,lim\dfrac{7n^2-3n}{n^2+2}\)
\(b,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(b,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(=lim\dfrac{2n+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}\)
\(=n\times\dfrac{2}{3}=\)+∞
\(a,lim\dfrac{7n^2-3n}{n^2+2}\)
\(=lim\dfrac{7-\dfrac{3}{n}}{1+\dfrac{2}{n^2}}\)
\(=\dfrac{7-0}{1+0}=\dfrac{7}{1}=7\)
Tìm các giới hạn sau
\(a,lim\left(\sqrt{n^2+n+1}-n\right)\)
\(b,lim\dfrac{\sqrt{n^3+2n}-2n^2}{3n+1}\)
\(a,lim\left(\sqrt{n^2+n+1}-n\right)\)
\(=lim\dfrac{n^2+n+1-n^2}{\sqrt{n^2+n+1}+n}\)
\(=lim\dfrac{1+\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}+\dfrac{1}{n^2}}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)
\(\lim\dfrac{\sqrt[]{n^3+2n}-2n^2}{3n+1}=\lim\dfrac{\sqrt[]{n+\dfrac{2}{n}}-2n}{3+\dfrac{1}{n}}=\lim\dfrac{n\left(\sqrt[]{\dfrac{1}{n}+\dfrac{2}{n^3}}-2\right)}{3+\dfrac{1}{n}}\)
\(=\dfrac{+\infty\left(0-2\right)}{3}=-\infty\)
Tìm các giới hạn sau:
\(a,lim\dfrac{\sqrt[3]{n^3+1}-3n}{\sqrt{n^2+n+1}}\)
\(b,lim\dfrac{n\sqrt{1+2+3+...+2n}}{3n^2+n-2}\)
\(\lim\dfrac{n\sqrt{1+2+...+2n}}{3n^2+n-2}=\lim\dfrac{n\sqrt{\dfrac{2n\left(2n+1\right)}{2}}}{3n^2+n-2}=\lim\dfrac{\sqrt{2+\dfrac{1}{n}}}{3+\dfrac{1}{n}-\dfrac{2}{n^2}}=\dfrac{\sqrt{2}}{3}\)
Tìm các giới hạn sau: l i m 9 n 2 - n + 1 4 n - 2
Tìm các giới hạn sau:
\(a,lim\dfrac{2n+1}{-3n+2}\)
\(b,lim\dfrac{5n^3-2n+1}{n-2n^3}\)
\(a,lim\dfrac{2n+1}{-3n+2}\)
\(=lim\dfrac{2+\dfrac{1}{n}}{-3+\dfrac{2}{n}}=-\dfrac{2}{3}\)
\(b,lim\dfrac{5n^3-2n+1}{n-2n^3}\)
\(=lim\dfrac{5-\dfrac{2}{n^2}+\dfrac{1}{n^3}}{\dfrac{1}{n^2}-2}=\dfrac{5}{-2}\)