Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
xin gam
Xem chi tiết
xin gam
Xem chi tiết
Lê Văn Quốc Huy
Xem chi tiết
Đỗ Hạnh Quyên
7 tháng 5 2016 lúc 9:22

Ta có phương trình : 

             \(2.\left(2^{\sin x\cos x}\right)^2+2^{\sin x\cos x}-10=0\)

Đặt \(t=2^{\sin x\cos x},t>0\) 

Ta có phương trình trở thành : \(2t^2+t-10=0\Leftrightarrow\left[\begin{array}{nghiempt}t=2\\t=-\frac{5}{2}\left(1\right)\end{array}\right.\)

Với \(t=2\Rightarrow2^{\sin x\cos x}=2\Leftrightarrow\sin x\cos x=1\)

                                        \(\Leftrightarrow\sin2x=\frac{1}{2}\Leftrightarrow\left[\begin{array}{nghiempt}2x=\frac{\pi}{6}+2k\pi\\2x=\frac{5\pi}{6}+2k\pi\end{array}\right.\)

                                        \(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{array}\right.\) => Đây là 2 nghiệm của phương trình

Thầy Đức Anh
Xem chi tiết

\(\sin2x-2\sin x-2\cos x+2=0\)

\(\Leftrightarrow\sin x\cos x-\sin x-\cos x+1=0\)(1)

Đặt \(t=\sin x+\cos x\left(-\sqrt{2}\le t\le\sqrt{2}\right)\)

\(\sin x.\cos x=\frac{t^2-1}{2}\)

Phương trình (1) trở thành :

\(\frac{t^2-1}{2}-t+1=0\Leftrightarrow\left(t-1\right)^2=0\Leftrightarrow t=1\)( Thoả mãn điều kiện của \(t\))

\(t=1\Leftrightarrow\sin x+\cos x=1\)

Vậy

Khách vãng lai đã xóa
Bùi Minh Hằng
20 tháng 12 2021 lúc 9:18
Khách vãng lai đã xóa
Bùi Minh Hằng
20 tháng 12 2021 lúc 9:20
Khách vãng lai đã xóa
Phạm Khắc Đang
Xem chi tiết
Hoàng Thị Tâm
18 tháng 4 2016 lúc 21:46

Điều kiện : \(\sin2x\ne0\Leftrightarrow x\ne\frac{k\pi}{2}\left(k\in Z\right)\)

\(\frac{3\sin x-2\sin x}{\sin2x\cos x2x}=2\Leftrightarrow3\sin x-2\sin x=2\sin2x.\cos x\)

                         \(\Leftrightarrow2\left(1-\cos x\right)\left(\sin2x-\sin x\right)=0\)

                         \(\Leftrightarrow\begin{cases}\cos x=1\\\sin2x=\sin x\end{cases}\)

                         \(\Leftrightarrow\begin{cases}x=2k\pi\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{cases}\)

Đối chiếu với điều kiện ta có nghiệm của phương trình là \(x=\pm\frac{\pi}{3}+k2\pi\)

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 10:33

a) Vì \(\sin \frac{\pi }{6} = \frac{1}{2}\) nên ta có phương trình \(sin2x = \sin \frac{\pi }{6}\)

\( \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{6} + k2\pi \\2x = \pi  - \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{12}} + k\pi \\x = \frac{{5\pi }}{{12}} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

\(\begin{array}{l}b,\,\,sin(x - \frac{\pi }{7}) = sin\frac{{2\pi }}{7}\\ \Leftrightarrow \left[ \begin{array}{l}x - \frac{\pi }{7} = \frac{{2\pi }}{7} + k2\pi \\x - \frac{\pi }{7} = \pi  - \frac{{2\pi }}{7} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{3\pi }}{7} + k2\pi \\x = \frac{{6\pi }}{7} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

\(\begin{array}{l}\;c)\;sin4x - cos\left( {x + \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow sin4x = cos\left( {x + \frac{\pi }{6}} \right)\\ \Leftrightarrow sin4x = \sin \left( {\frac{\pi }{2} - x - \frac{\pi }{6}} \right)\\ \Leftrightarrow sin4x = \sin \left( {\frac{\pi }{3} - x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}4x = \frac{\pi }{3} - x + k2\pi \\4x = \pi  - \frac{\pi }{3} + x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{15}} + k\frac{{2\pi }}{5}\\x = \frac{{2\pi }}{9} + k\frac{{2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 5 2019 lúc 13:49

Bóng Đêm Hoàng
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 0:09

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(\dfrac{cosx}{sinx}-1=\dfrac{cos^2x-sin^2x}{1+\dfrac{sinx}{cosx}}+sin^2x-sinx.cosx\)

\(\Leftrightarrow\dfrac{cosx-sinx}{sinx}=cosx\left(cosx-sinx\right)-sinx\left(cosx-sinx\right)\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(\dfrac{1}{sinx}-cosx+sinx\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(1-sinx.cosx+sin^2x\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(3-sin2x-cos2x\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(3-\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)\right)=0\)

Sách Giáo Khoa
Xem chi tiết
Minh Hải
9 tháng 4 2017 lúc 20:47

a) Dễ thấy cosx = 0 không thỏa mãn phương trình đã cho nên chiaw phương trình cho cos2x ta được phương trình tương đương 2tan2x + tanx - 3 = 0.

Đặt t = tanx thì phương trình này trở thành

2t2 + t - 3 = 0 ⇔ t ∈ {1 ; }.

Vậy

b) Thay 2 = 2(sin2x + cos2x), phương trình đã cho trở thành

3sin2x - 4sinxcosx + 5cos2x = 2sin2x + 2cos2x

⇔ sin2x - 4sinxcosx + 3cos2x = 0

⇔ tan2x - 4tanx + 3 = 0

⇔ x = + kπ ; x = arctan3 + kπ, k ∈ Z.

c) Thay sin2x = 2sinxcosx ; = (sin2x + cos2x) vào phương trình đã cho và rút gọn ta được phương trình tương đương

sin2x + 2sinxcosx - cos2x = 0 ⇔ tan2x + 4tanx - 5 = 0 ⇔

⇔ x = + kπ ; x = arctan(-5) + kπ, k ∈ Z.

d) 2cos2x - 3√3sin2x - 4sin2x = -4

⇔ 2cos2x - 3√3sin2x + 4 - 4sin2x = 0

⇔ 6cos2x - 6√3sinxcosx = 0 ⇔ cosx(cosx - √3sinx) = 0