Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
#Mun   ^^
Xem chi tiết
Nguyễn Ngọc Nhi
Xem chi tiết
6a01dd_nguyenphuonghoa.
Xem chi tiết

a, 2\(xy\) - 2\(x\) + 3\(y\) = -9

(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12

2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12

(\(y-1\))(2\(x\) + 3) = -12

Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}

Lập bảng ta có:

\(y\)-1 -12 -6 -4 -3 -2 -1 1 2 3 4 6 12
\(y\) -11 -5 -3 -2 -1 0 2 3 4 5 7 13
2\(x\)+3 1 2 3 4 6 12 -12 -6 -4 -3 -2 -1
\(x\) -1 -\(\dfrac{1}{2}\) 0 \(\dfrac{1}{2}\) \(\dfrac{3}{2}\) \(\dfrac{9}{2}\) \(-\dfrac{15}{2}\) \(-\dfrac{9}{2}\) -\(\dfrac{7}{2}\) -3 \(-\dfrac{5}{2}\) -2

Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)

 

  
 

 

 

          

 

    

b, (\(x+1\))2(\(y\) - 3) = -4 

    Ư(4) = {-4; -2; -1; 1; 2; 4}

Lập bảng ta có: 

\(\left(x+1\right)^2\) - 4(loại) -2(loại) -1(loại) 1 2 4
\(x\)       0 \(\pm\)\(\sqrt{2}\)(loại) 1; -3
\(y-3\) 1 2 4 -4 -2 -1
\(y\)       -1   2

Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là: 

(\(x;y\)) = (0; -1); (-3; 2); (1; 2)

 

Xyz OLM
27 tháng 6 2023 lúc 12:07

c) \(\left(x+3\right)^2+\left(2y-1\right)^2< 44\)

\(\Leftrightarrow\left(x+3\right)^2< 44-\left(2y-1\right)^2< 44\) (do \(-\left(2y-1\right)^2\le0\)) (1) 

mà (x + 3)2 là số chính phương 

Kết hợp (1) ta được \(\left(x+3\right)^2\le36\)

\(\Leftrightarrow\left(x+3\right)^2\le6^2\Leftrightarrow\left(x+3\right)^2\in\left\{0;1;4;9;25;36\right\}\)

Với (x + 3)2 \(\in\left\{0;1;4\right\}\) ta được (2y - 1)2 \(\in\left\{0;1;4;9;25;36\right\}\) 

Với (x + 3)2 \(\in\left\{9;16\right\}\) ta được (2y - 1)2 \(\in\left\{0;1;4;9;25\right\}\) 

Với (x + 3)2 = 25 ta được (2y - 1)2 \(\in\left\{0;1;4;9;16\right\}\)

Với (x + 3)2 = 36 ta được (2y - 1)2 \(\in\left\{0;1;4;9\right\}\)

An Nguyễn Văn
Xem chi tiết
Chu Văn Long
5 tháng 10 2016 lúc 11:05

Dễ nhận thấy pt này có một nghiệm là 1 nên ta sẽ tạo nhân tử là x-1

Ta có: \(2x^4+4x^3-7x^2-5x+6=0\)

<=>  \(\left(2x^4-2x^3\right)+\left(6x^3-6x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)

<=>    \(2x^3\left(x-1\right)+6x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)

<=>  \(\left(x-1\right)\left(2x^3+6x^2-x-6\right)=0\)

<=>  \(\orbr{\begin{cases}x=1\\2x^3+6x-x-6=0\end{cases}}\)

Bạn có thể giải pt 2x3+6x-x-6=0 bằng pp Cardano nha, cm dài lắm

Cô Hoàng Huyền
5 tháng 10 2016 lúc 11:05

Ta tách được \(2x^4+4x^3-7x^2-5x+6=0\Leftrightarrow\left(x-1\right)\left(2x^3+6x-x-6\right)=0\)

Vậy pt có 1 nghiệm x= 1.

Ta giải pt bậc ba theo công thức Cardano:

\(2x^3+6x^2-x-6=0\left(1\right)\Leftrightarrow x^3+3x^2-\frac{1}{2}x-3=0\)

Đặt \(x=y-1\Rightarrow y^3-\frac{7}{2}y-\frac{1}{2}=0\left(2\right)\)

\(\Delta=27\left(\frac{-1}{2}\right)^2-4\left(\frac{7}{2}\right)^3=-\frac{659}{4}< 0\)

Vậy pt (2) có 3 nghiệm phân biệt thuộc khoảng \(\left(-\frac{\sqrt{42}}{3};\frac{\sqrt{42}}{3}\right)\)

Đặt \(y=\frac{\sqrt{42}}{3}cost\left(t\in\left(0;\pi\right)\right)\). Thay vào pt(2) ta có: \(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\)

Ta tìm được 3 nghiệm t thuộc khoảng \(\left(0;\pi\right)\), sau đó tìm cost rồi suy ra y và x.

Cô tìm một nghiệm để giúp em kiểm chứng nhé. Em có thể thay giá trị nghiệm để kiểm tra.

\(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\Rightarrow t=\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\Rightarrow y=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\)

Vậy \(x=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}-1\). Đó là một nghiệm, em có thể tìm 2 nghiệm còn lại bằng cách tương tự.

Thiên An
5 tháng 10 2016 lúc 11:14

\(2x^4+4x^3-7x^2-5x+6=0\)

\(\Leftrightarrow\)\(\left(2x^4-2x^3\right)+\left(6x^3-6x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)

\(\Leftrightarrow\)\(2x^3\left(x-1\right)+6x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(2x^3+6x^2-x-6\right)=0\)

Vậy \(x=1\) hoặc \(2x^3+6x^2-x-6=0\)

Dùng MTBT giải phương trình trên ta nhận thêm được 3 nghiệm: x1 = 0,94; x2 = -1,14; x3 = -2,79.

Trần Quốc Việt
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 6 2023 lúc 9:04

x^4-4x^3+6=0

=>\(x\simeq1,3;x\simeq3,9\)

Thuy Ho
Xem chi tiết
Cold Wind
3 tháng 7 2016 lúc 22:31

x^3 + x=0

x (x^2 +1) =0

Th1:

x=1

Th2:

x^2 +1 =0

x^2 = -1

=> x thuộc rỗng

Vậy x=0

Tiên Tiên
3 tháng 7 2016 lúc 22:35

x = 0 => 0^3 + 0 = 0 

Cold Wind
3 tháng 7 2016 lúc 22:42

Ấn nhầm, sửa tí. Chỗ Th1 đó:

x=0  (ko phải x=1)

6a01dd_nguyenphuonghoa.
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
15 tháng 6 2023 lúc 9:11

`@` `\text {Ans}`

`\downarrow`

\(\left(\dfrac{x}{3}+\dfrac{1}{2}\right)\left(75\%-1\dfrac{1}{2}x\right)=0\)

`=>`\(\left[{}\begin{matrix}\dfrac{x}{3}+\dfrac{1}{2}=0\\\dfrac{75}{100}-\dfrac{3}{2}x=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}\dfrac{x}{3}=-\dfrac{1}{2}\\\dfrac{3}{2}x=\dfrac{75}{100}\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x=-1\cdot3\\x=\dfrac{75}{100}\div\dfrac{3}{2}\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy, `x={-3/2; 1/2}.`

8/5_06 Trương Võ Đức Duy
Xem chi tiết
Minh Hiếu
2 tháng 11 2021 lúc 13:02

a) \(3xy^2-12x\)

\(=3x\left(y^2-4\right)\)

 

Nguyễn Lê Phước Thịnh
2 tháng 11 2021 lúc 23:03

Bài 1:

b: \(=\left(x-2y\right)\left(x+2y\right)+4\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+4\right)\)

c: \(=\left(x+y-3\right)\left(x+y+3\right)\)

Lê Thu Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 12 2021 lúc 14:42

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)

Để phương trình có vô số nghiệm thì m=3