Rút gọn biểu thức:
a) P = 1 ( x − 2 y ) 2 + 1 x 2 − 4 y 2 + 1 ( x + 2 y ) 2 . x 2 + 4 xy + 4 y 2 16 x
b) Q = 1 x 2 + 8 x + 16 − 1 x 2 − 8 x + 16 : 1 x + 4 + 1 x − 4 .
Rút gọn biểu thức:A=\(\dfrac{2}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}-2}+\dfrac{4}{x-4}\)
đk : x >= 0 ; x khác 4
\(A=\dfrac{2\sqrt{x}-4-\sqrt{x}-2+4}{x-4}=\dfrac{\sqrt{x}-2}{x-4}=\dfrac{1}{\sqrt{x}+2}\)
\(A=\dfrac{2}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}-2}+\dfrac{4}{x-4}\left(đk:x>2\right)\)
\(=\dfrac{2\left(\sqrt{x}-2\right)-\left(\sqrt{x}+2\right)+4}{x-4}\)
\(=\dfrac{2\sqrt{x}-4-\sqrt{x}-2+4}{x-4}=\dfrac{\sqrt{x}-2}{x-4}=\dfrac{1}{\sqrt{x}+2}\)
ĐKXĐ: x khác 4; x ≥ 0
\(A=\dfrac{2\sqrt{x}-4-\sqrt{x}-2+4}{x-4}=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{1}{\sqrt{x}+2}\)
rút gọn biểu thức:A=(x-3)(x+3)-(x-1)3-x(1-3x-x2)
Rút gọn biểu thức:
a) A=(x-y)2+(x+y)2
b) B=(2x-1)2-2(2x-3)2+4
a, \(A=\left(x-y\right)^2+\left(x+y\right)^2\)
\(=x^2-2xy+y^2+x^2+2xy+y^2\)
\(=2x^2+2y^2\)
a) \(A=\left(x-y\right)^2+\left(x+y\right)^2\\ =x^2-2xy+y^2+x^2+2xy+y^2=2x^2+2y^2\)
b) \(B=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\\ =4x^2-4x+1-2\left(4x^2-12x+9\right)+4\\ =4x^2-4x+1-8x^2+24x-18+4\)
\(=-4x^2+20x-13\)
Cho 2 biểu thức:
A = \(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
B = \(\dfrac{1}{\sqrt{x}-1}\)
Rút gọn biểu thức A - B
\(A=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
rút gọn biểu thức:
A=\(\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(A=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{x-25}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+5}{\sqrt{x}+5}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}+1}\)
Cho biểu thức:
A=x/2- (1/x-4x-2/1-2x) :(1+4x-x2 +1/x2 -2x)
a,rút gọn A
b,tìm x∈ Z để A∈Z
cho biểu thức:A=[(1/x-1)+(x/x^3-1).(x^2+x+1/x+1)]:2x+1/x^2+2x+1
a,rút gọn biểu thức A
b,tính giá trị của biểu thức khi x=1/2
\(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne-\frac{1}{2}\end{cases}}\)
a) \(A=\left(\frac{1}{x-1}+\frac{x}{x^3-1}\cdot\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)
\(\Leftrightarrow A=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)
\(\Leftrightarrow A=\frac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x+1\right)^2}{2x+1}\)
\(\Leftrightarrow A=\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow A=\frac{x+1}{x-1}\)
b) Thay \(x=\frac{1}{2}\)vào A, ta được :
\(A=\frac{\frac{1}{2}+1}{\frac{1}{2}-1}=\frac{\frac{3}{2}}{-\frac{1}{2}}=-3\)
rút gọn các biểu thức:
a) (x-2)2-(2x-1)2+(3x-1)(x-5)
b) (x-3)3-(x+3)(x2-3x+9)+(3x-1)(3x+1)
a: Ta có: \(\left(x-2\right)^2-\left(2x-1\right)^2+\left(3x-1\right)\left(x-5\right)\)
\(=x^2-4x+4-4x^2+4x-1+3x^2-15x-x+5\)
\(=-16x+8\)
b: Ta có: \(\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
=27x-55
Rút gọn biểu thức:a, A=|x|-|x-5|
b,B=|x+2|+|-5+x|
Bài 1: Rút gọn biểu thức:
a) A = \(\left(\frac{1}{x^2-4x}+\frac{2}{16-x^2}+\frac{4}{4x+16}\right):\frac{1}{4x}\)
\(A=\left(\dfrac{1}{x^2-4x}+\dfrac{2}{16-x^2}+\dfrac{4}{4x+16}\right):\dfrac{1}{4x}\left(x\ne4;x\ne-4;x\ne0\right).\)
\(A=\left(\dfrac{1}{x\left(x-4\right)}+\dfrac{-2}{\left(x+4\right)\left(x-4\right)}+\dfrac{1}{x+4}\right).4x\).
\(A=\dfrac{x+4-2x+x^2-4x}{x\left(x-4\right)\left(x+4\right)}.4x.\)
\(A=\dfrac{x^2-5x+4}{\left(x-4\right)\left(x+4\right)}.4.\)
\(A=\dfrac{\left(x-4\right)\left(x-1\right)}{\left(x-4\right)\left(x+4\right)}.4.\)
\(A=\dfrac{4\left(x-1\right)}{x+4}.\)