Rút gọn biểu thức 63 a 3 b 4 28 a b 6 với a > 0; b < 0 ta được kết quả:
A. 3 a 2 b
B. 9 a 2 4 b 2
C. - 3 a 2 b
D. - 9 a 2 4 b 2
Rút gọn biểu thức
a) \(2\sqrt{28}+\sqrt{63}-\sqrt{112}\)
b) \(3\sqrt{48}-5\sqrt{108}+6\sqrt{\dfrac{1}{3}}\)
`a)2\sqrt{28}+\sqrt{63}-\sqrt{112}`
`=4\sqrt{7}+3\sqrt{7}-4\sqrt{7}`
`=3\sqrt{7}`.
`b)3\sqrt{48}-5\sqrt{108}+6\sqrt{1/3}`
`=12\sqrt{3}-30\sqrt{3}+2\sqrt{[3^2]/3}`
`=-18\sqrt{3}+2\sqrt{3}`
`=-16\sqrt{3}`.
Rút gọn biểu thức a, √75+2√3-2√7 b√(4-√7)²-√63 C, 3/√5+3 - √5/√5-3
\(a,\sqrt{75}+2\sqrt{3}-2\sqrt{7}\\ =\sqrt{25\cdot3}+2\sqrt{3}-2\sqrt{7}\\ =5\sqrt{3}+2\sqrt{3}-2\sqrt{7}\\ =7\sqrt{3}-2\sqrt{7}\)
\(b,\sqrt{\left(4-\sqrt{7}\right)^2}-\sqrt{63}\\ =\left|4-\sqrt{7}\right|-\sqrt{9\cdot7}\\ =4-\sqrt{7}-3\sqrt{7}\\ =4-4\sqrt{7}\)
\(c,\dfrac{3}{\sqrt{5}+3}-\dfrac{\sqrt{5}}{\sqrt{5}-3}\\ =\dfrac{3\left(\sqrt{5}-3\right)}{5-3}-\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{5-3}\\ =\dfrac{3\sqrt{5}-9-5-3\sqrt{5}}{2}\\ =\dfrac{-14}{2}\\ =-7\)
cho hai biểu thức
A = \(\sqrt{63}-\sqrt{28}-\sqrt{\left(\sqrt{7}-1\right)^2}\)
B = \(\left(\frac{1}{\sqrt{x}+3}+\frac{1}{\sqrt{x}-3}\right).\frac{4.\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
rút gọn biểu thức A và B
tìm giá trị của x để giá trị biểu thức B bằng giá trị biểu thức A
Rút gọn biểu thức A= (3+1)(3^2+1)(3^4+1)...(3^63+1)
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{63}+1\right).\)
\(=\frac{\left(3+1\right)\left(3-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{63}+1\right)}{2}\)
\(=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{63}+1\right)}{2}\)
\(=\frac{\left(3^{64}-1\right)\left(3^{63}+1\right)}{2}\left(\text{bn xem lại chỗ }3^{63}\text{ nhé!! ko thì ko lm đc tiếp đâu}\right)\)
ok thế tiếp
\(A=\frac{\left(3^{64}-1\right)\left(3^{64}+1\right)}{2}=\frac{3^{128}-1}{2}.\)
Bài này chỉ áp dụng hằng đẳng thức số 3 thôi ak!
cho biểu thức:
A= 3^0+3^2+3^4+...+3^28
a, hãy rút gọn biểu thức trên
b. chứng minh A chia hết cho 5
Rút gọn các biểu thức sau:
a) \(2\sqrt{28}+2\sqrt{63}-3\sqrt{175}+\sqrt{112}-\sqrt{20}\)
b) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{10}{1+\sqrt{6}}\)
a: Ta có: \(2\sqrt{28}+2\sqrt{63}-3\sqrt{175}+\sqrt{112}-\sqrt{20}\)
\(=4\sqrt{7}+6\sqrt{7}-15\sqrt{7}+4\sqrt{7}-2\sqrt{5}\)
\(=-\sqrt{7}-2\sqrt{5}\)
Rút gọn các biểu thức sau:
a, P = 7 + 2 - 51 + 14 2
b, Q = 2 3 + 1 - 1 3 - 2 + 6 3 + 3
a, P = 7 + 2 - 51 + 14 2 = 7 + 2 - 7 + 2 = 0
b, Q = 2 3 + 1 - 1 3 - 2 + 6 3 + 3
= 2 3 - 1 2 + 3 + 2 + 6 3 - 3 6
= 4 + 3
Cho hai biểu thức:
A= \(\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)}^2\)
B= \(\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\left(x>0;x\ne9\right)\)
a) Rút gọn A,B
b) Tìm các giá trị của x để A>B?
Help !!!
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{2^2\cdot7}-\sqrt{3^2\cdot7}+\dfrac{\sqrt{7}\cdot\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=2\sqrt{7}-3\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1\)
\(=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\left[\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{2\cdot4}{\sqrt{x}-3}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\) khi
\(\dfrac{8}{\sqrt{x}-3}< -\sqrt{7}\)
\(\Leftrightarrow8< -\sqrt{7x}+3\sqrt{7}\)
\(\Leftrightarrow x< \dfrac{\left(3\sqrt{7}-8\right)^2}{7}\)
Bài 46. Rút gọn các biểu thức sau với x ≥ 0:
a) 2√3x – 4√3x + 27 – 3√3x
b) 3√2x – 5√8x + 7√18x + 28
\(a,=27-5\sqrt{3x}\\ b,=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28=14\sqrt{2x}+28\)
Cho biểu thức: \(A=\dfrac{\sqrt{x}-1}{2\sqrt{x}+1}-\dfrac{3}{1-2\sqrt{x}}-\dfrac{4\sqrt{x}+4}{4x-1}\) và \(B=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)với x > 0 , x = 1/4
a. TÍnh giá trị của biểu thức B biết \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
b. Rút gọn biểu thức A
a: Ta có: \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
\(=4-2\sqrt{3}+2\sqrt{3}\)
=4
Thay x=4 vào B, ta được:
\(B=\dfrac{2-4}{2}=-1\)