Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia: (x2 – 2xy + y2) : (y – x)
Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia: (x2 + 2xy + y2) : (x + y)
(x2 + 2xy + y2) : (x + y)
= (x + y)2 : (x + y)
= x + y
Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia:
a) (x2 + 2xy + y2) : (x + y)
b) (125x3 + 1) : (5x + 1)
c) (x2 – 2xy + y2) : (y – x)
Lời giải:
a) (x2 + 2xy + y2) : (x + y)
= (x + y)2 : (x + y)
= x + y
b) (125x3 + 1) : (5x + 1)
= [(5x)3 + 1] : (5x + 1)
= (5x + 1)[(5x)2 – 5x + 1]] : (5x + 1)
= (5x)2 – 5x + 1
= 25x2 – 5x + 1
c) (x2 – 2xy + y2) : (y – x)
= (x – y)2 : [-(x – y)]
= -(x – y)
= y – x
Hoặc (x2 – 2xy + y2) : (y – x)
= (y2 – 2yx + x2) : (y – x)
= (y – x)2 : (y – x)
= y – x
\(\text{a) (x^2 + 2xy + y^2) : (x + y)}\\ \left(x+y\right)^2:\left(x+y\right)=x+y\)
Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia: (125x3 + 1) : (5x + 1)
(125x3 + 1) : (5x + 1)
= [(5x)3 + 1] : (5x + 1)
= (5x + 1)[(5x)2 – 5x + 1]] : (5x + 1)
= (5x)2 – 5x + 1
= 25x2 – 5x + 1
Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia : (8x^3-1) : (4x^2+2x+1)
Áp dụng các hàng đẳng thức đáng nhớ để thực hiện phép chia:
a) (x^2+2xy+y^2) : (x+y)
b) (125x^3+1) : (5x+1)
c) (x^2-2xy+y^2) : (y-x)
a) (x^2+2xy+y^2) : (x+y)
=(x+y)2:(x+y)
=x+y
b) (125x^3+1) : (5x+1)
=(5x+1)(25x2-5x+1):(5x+1)
=25x2-5x+1
c) (x^2-2xy+y^2) : (y-x)
=(x-y)2:(y-x)
=-(x-y)2:(x-y)
=-(x-y)
=-x+y
Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia:
a) (x2 + 2xy + y2) : (x + y); b) (125x3 + 1) : (5x + 1);
c) (x2 – 2xy + y2) : (y – x).
a) (x2 + 2xy + y2) : (x + y);
=(x+y)2:(x+y)
=x+y
b) (125x3 + 1) : (5x + 1);
=(5x+1)(25x2-5x+1):(5x+1)
=25x2-5x+1
c) (x2 – 2xy + y2) : (y – x).
=(x-y)2:(y-x)
=(y-x)2:(y-x)
=y-x
Áp dụng bằng hằng đẳng thức đáng nhớ để thực hiện phép chia :
a) \(\left(x^2+2xy+y^2\right):\left(x+y\right)\)
b) \(\left(125x^3+1\right):\left(5x+1\right)\)
c) \(\left(x^2-2xy+y^2\right):\left(y-x\right)\)
a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.
b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)
= (5x)2 – 5x + 1 = 25x2 – 5x + 1.
c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x
Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)
= (y – x)2 : (y – x) = y - x.
Bài giải:
a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.
b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)
= (5x)2 – 5x + 1 = 25x2 – 5x + 1.
c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x
Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)
= (y – x)2 : (y – x) = y - x.
a) (x2 +2xy + y2 ) : (x +y)
= (x +y)2 : (x +y)
= x + y
b) (125x3 + 1) : (5x + 1)
= (5x + 1)(25x2 - 5x + 1) : (5x + 1)
= 25x2 - 5x + 1
c) \(\left(x^2-2xy+y^2\right)\left(y-x\right)\)
= \(\left(x-y\right)^2:\left(y-x\right)\)
= \(x-y\)
Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia
a) ( x2 + 2xy + y2 ) \(\div\)( x+ y )
b) ( 125x3 + 1 ) \(\div\)( 5x + 1 )
c) ( x2 - 2xy + y2 ) \(\div\)( y - x )
a) \(\left(x^2+2xy+y^2\right):\left(x+y\right)\)
\(=\left(x+y\right)^2:\left(x+y\right)\)
\(=x+y\)
b) \(\left(125x^3+1\right):\left(5x+1\right)\)
\(=\left(5x+1\right)\left(25x^2-5x+1\right):\left(5x+1\right)\)
\(=25x^2-5x+1\)
c) \(\left(x^2-2xy+y^2\right):\left(y-x\right)\)
\(=\left(x-y\right)^2:\left(y-x\right)\)
\(=\left(y-x\right)^2:\left(y-x\right)\)
\(=y-x\)
Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia:
a) (x2 + 2xy + y2) : (x + y); b) (125x3 + 1) : (5x + 1);
c) (x2 – 2xy + y2) : (y – x).
a ) \(\left(x^2+2xy+y^2\right):\left(x+y\right)\)
\(=\left(x+y\right)^2:\left(x+y\right)\)
\(=\left(x+y\right)\)
b ) \(\left(125x^3+1\right)\left(5x+1\right)\)
\(=\left[\left(5x\right)^3+1\right]:\left(5x+1\right)\)
\(=\left(5x\right)^2-5x+1\)
\(=25x^2-5x+1\)
c ) \(\left(x^2-2xy+y^2\right):\left(y-x\right)\)
\(=\left(x-y\right)^2:\left[-\left(x-y\right)\right]\)
\(=-\left(x-y\right)\)
\(=y-x\)
a) \(\left(x^2+2xy+y^2\right):\left(x+y\right)\\ =\left(x+y\right)^2:\left(x+y\right)\\ =\left(x+y\right)\)
b) \(\left(125x^3+1\right)\left(5x+1\right)\\=\left[\left(5x\right)^3+1\right]:\left(5x+1\right)\\ =\left(5x\right)^2-5x+1 \\ =25x^2-5x+1\)
c) \(\left(x^2-2xy+y^2\right):\left(y-x\right)\\ =\left(x-y\right)^2:\left[-\left(x-y\right)\right]\\ =-\left(x-y\right)\\ =y-x\)