a ) \(\left(x^2+2xy+y^2\right):\left(x+y\right)\)
\(=\left(x+y\right)^2:\left(x+y\right)\)
\(=\left(x+y\right)\)
b ) \(\left(125x^3+1\right)\left(5x+1\right)\)
\(=\left[\left(5x\right)^3+1\right]:\left(5x+1\right)\)
\(=\left(5x\right)^2-5x+1\)
\(=25x^2-5x+1\)
c ) \(\left(x^2-2xy+y^2\right):\left(y-x\right)\)
\(=\left(x-y\right)^2:\left[-\left(x-y\right)\right]\)
\(=-\left(x-y\right)\)
\(=y-x\)
a) \(\left(x^2+2xy+y^2\right):\left(x+y\right)\\ =\left(x+y\right)^2:\left(x+y\right)\\ =\left(x+y\right)\)
b) \(\left(125x^3+1\right)\left(5x+1\right)\\=\left[\left(5x\right)^3+1\right]:\left(5x+1\right)\\ =\left(5x\right)^2-5x+1 \\ =25x^2-5x+1\)
c) \(\left(x^2-2xy+y^2\right):\left(y-x\right)\\ =\left(x-y\right)^2:\left[-\left(x-y\right)\right]\\ =-\left(x-y\right)\\ =y-x\)