Cộng hai phân thức x + 1 2 x - 2 + - 2 x x 2 - 1
Phát biểu quy tắc : cộng hai phân thức cùng mẫu thức, cộng hai phân thức khác mẫu thức.
Làm tính cộng :
\(\dfrac{3x}{x^3-1}+\dfrac{x-1}{x^2+x+1}\)
- Muốn cộng hai phân thức cùng mẫu, ta cộng các tử với nhau và giữ nguyên mẫu.
- Muốn cộng hai phân thức khác mẫu, ta quy đồng mẫu thức rồi cộng các phân thức cùng mẫu vừa tìm được.
\(\dfrac{3x}{x^3-1}+\dfrac{x-1}{x^2+x+1}\)
\(=\dfrac{3x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+x^2-2x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{1}{x-1}\)
Cộng hai phân thức : (3/x+1)+(1/x-1)
Quy đồng hai phân thức: 9/(x^2-4x) ; 5/(x+2) ; 6/(x-2)
Ai làm giúp mik đúng mik tik cho........!!!!!!!!!!!!!
Cộng hai phân thức cùng mẫu (giúp mình vs, mìn đang cần gấp)
x + 1 / 2x - 2 + -2x / x2 - 1
ĐKXĐ: \(x\ne1;x\ne-1\)
\(\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}\) \(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\) \(=\dfrac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}-\dfrac{4x}{2\left(x-1\right)\left(x+1\right)}\) \(=\dfrac{x^2+2x+1-4x}{2\left(x-1\right)\left(x+1\right)}\) \(=\dfrac{x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}\) \(=\dfrac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\) \(=\dfrac{x-1}{2\left(x+1\right)}\)
\(\dfrac{x-2}{x+3}+\dfrac{x+5}{x+3}\)
a, Cộng hai phân thức
b, Tìm ĐKXD
a)\(=\dfrac{x-2+x+5}{x+3}=\dfrac{2x+3}{x+3}\)
b)ĐKXĐ: \(x+3\ne0\Leftrightarrow x\ne-3\)
a) Ta có: \(\dfrac{x-2}{x+3}+\dfrac{x+5}{x+3}\)
\(=\dfrac{x-2+\left(x+5\right)}{x+3}\)
\(=\dfrac{x-2+x+5}{x+3}\)
\(=\dfrac{2x+3}{x+3}\)
b) ĐKXĐ: \(x+3\ne0\)
hay \(x\ne-3\)
Cộng trừ phân thức
(1)/(x^(2)-x+1)+1-(x^(2)+2)/(x^(3)+1)
\(\dfrac{1}{x^2-x+1}-\dfrac{x^2+2}{x^3+1}=\dfrac{1}{x^2-x+1}-\dfrac{x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x+1-x^2-2}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)
Cộng hai phân thức
\(\frac{1}{\left(-x+2\right)}+\frac{1}{\left(x+2\right)\left(4x+7\right)}\)
Cộng trừ phân thức sau:
\(\dfrac{4x^2-3x+5}{x^2-1}-\dfrac{1-2x}{x^2+x+1}-\dfrac{6}{x-1}\)
Cho hai phân thức \(\frac{x+2}{x}\) và \(\frac{x^2-4}{x+1}\) với \(x\)≠\(0\); \(x\)≠\(-1\) và \(x\)≠\(2\), biến đổi hai phân thức này thành cặp phân thức bằng nó và có cùng tử thức
Ta có:
\(\dfrac{x^2-4}{x+1}\)
\(=\dfrac{\left(x+2\right)\left(x-2\right)}{x+1}\)
Và:
\(\dfrac{x+2}{2x}\)
\(=\dfrac{\left(x+2\right)\left(x-2\right)}{2x\left(x-2\right)}\)
Vậy ta đã biến đổi hai phân thức đó để chúng bằng phân thức cũ và có tủ bằng nhau
1. Tìm GTLN của biểu thức:
M=căn x trừ 1 trên căn x cộng 2(x lớn hơn bằng o)
P= 2 căn x trừ 1 trên x cộng hai căn cộng 1
2. Tìm GTNN của biểu thức
P = x cộng 3 trên căn x cộng 1
\(M=\dfrac{\sqrt{x-1}}{\sqrt{x+2}}\)
ĐKXĐ:x\(\ge\)1
M=\(\sqrt{\dfrac{x-1}{x+2}}=\sqrt{\dfrac{x+2-3}{x+2}}=\sqrt{1-\dfrac{3}{x+2}}\)
Để M lớn nhất thì \(\dfrac{3}{x+2}\) phải bé nhất <=>x+2 lớn nhất(không tìm được)
=>không tồn tại GTLN của M
---câu thứ 2 đọc đề không hiểu---
2.ĐKXĐ:x>-1
\(P=\dfrac{x+3}{\sqrt{x+1}}=\dfrac{x+1+2}{\sqrt{x+1}}=\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\)
Áp dụng BĐT cosi cho 2 số dương
\(\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\ge2\sqrt{\dfrac{2\sqrt{x+1}}{\sqrt{x+1}}}=2\sqrt{2}\)
Dấu = xảy ra khi x+1=2<=>x=1
=>GTNN của P=2\(\sqrt{2}\)đạt tại x=1