Câu 7: Cho x + y = 1 Rút gọn biểu thức E = 3x2yz + 3x2z - 3xyz
Bài 1 rút gọn biểu thức sau A,xy.(2x²-3)-x²(5xy+y)+x²y B,3xyz.(y-2)-5yz(1-y)-8z.(y²-3)
\(A,xy\left(2x^2-3\right)-x^2\left(5xy+y\right)+x^2y\\ =2x^3y-3xy-5x^3y-x^2y+x^2y\\ =\left(2x^3y-5x^3y\right)+\left(-x^2y+x^2y\right)-3xy\\ =-3x^3y-3xy\)
\(B,3xyz\left(y-2\right)-5yz\left(1-y\right)-8z\left(y^2-3\right)\\ =3xy^2z-6xyz-5yz+5y^2z-8y^2z+24z\\ =3xy^2z-6xyz+\left(5y^2z-8y^2z\right)-5yz+24z\\ =3xy^2z-6xyz-3y^2z-5yz+24z\)
rút gọn biểu thức : A=(x3-y3-z3-3xyz):((x+y)2+(y-z)2+(x+z)2)
Lời giải:
\(A=\frac{x^3-y^3-z^3-3xyz}{(x+y)^2+(y-z)^2+(x+z)^2}=\frac{(x-y)^3+3xy(x-y)-z^3-3xyz}{x^2+y^2+2xy+y^2-2yz+z^2+z^2+x^2+2xz}\)
\(=\frac{(x-y)^3-z^3+3xy(x-y-z)}{2x^2+2y^2+2z^2+2xy-2yz+2xz}=\frac{(x-y-z)[(x-y)^2+z(x-y)+z^2]+3xy(x-y-z)}{2(x^2+y^2+xy-yz+xz)}\)
\(=\frac{(x-y-z)[(x-y)^2+z(x-y)+z^2+3xy]}{2(x^2+y^2+xy-yz+xz)}=\frac{(x-y-z)(x^2+y^2+z^2+xy-yz+xz)}{2(x^2+y^2+z^2+xy-yz+xz)}=\frac{x-y-z}{2}\)
Rút gọn biểu thức M=(x^3+y^3+z^3-3xyz)/( x^2+y^2+z^2-xy-yz-zx)
\(M=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{x^2+y^2+z^2-xy-yz-xz}\)
\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{x^2+y^2+z^2-xy-yz-xz}\)
\(=x+y+z\)
Rút gọn biểu thức M=(x^3+y^3+z^3-3xyz)/ x^2+y^2+z^2-xy-yz-zx
thay 1 vào tử, thấy:
căn(5-x) = căn 4= 2;
căn bậc 3(x^2+7)=căn bậc 3 của 8=2
=> thêm bớt 2.
Bài làm:
lim {[căn(5-x)-2]-[căn bậc 3(x^2-7)-2]}/(x^2-1)
tương đương: lim [căn(5-x)-2]/(x^2-1) - lim [căn bậc 3(x^2-7)-2]/(x^2-1)
Tính lim từng số hạng như thường.
cho x3+y3+z3=3xyz. Rút gọn biểu thức:
A=\(\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
rút gọn biểu thức
\(\frac{x^3+y^3+z^3-3xyz}{\left(x+y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2}\)
Dat (x-y)2+(y-z)2+(x-z)2=A
=(x+y)3+z3-3x2y-3xy2-3xyz / A
=(x+y+z).(x2+2xy+y2-xy-yz+z2)-3xy(x+y+z) / A
=(x+y+z).(x2+y2+z2-xy-yz-xz) /A
=2(x+y+z).(x2+y2+z2-xy-yz-xz) /2A
=(x+y+z)[ (x2-2xy+y2)+(y2-2yz+z2)+(x2-2xz+z2) / 2A
=(x+y+z).[ (x-y}2+(y-z)2+(x-z)2 ] /2A
=(x+y+z). A /2A
=x+y+z /2
Rút gọn phân thức: (x^3 + y^3 + z^3 - 3xyz) / (x - y)^2 + (y - z)^2 + (z - x)^2
\(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(=\frac{x^3+y^3+z^3-3xyz}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}=\frac{\left(x+y+z\right).\left(x^2+y^2+z^2-xy-yz-zx\right)}{2.\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{x+y+z}{2}\)
p/s: áp dụng 7 hàng đẳng thức là làm đc =)
Câu 1: Phép chia đa thức ( x – y )2 cho đa thức ( y – x )2
Câu 2 : Rút gọn biểu thức P =(x + y)2 + (x - y)2 + 2(x + y)(x- y)
Câu 3 : Giá trị của biểu thức x2 + 2x + 1 tại x = -1
Câu 4 : Một hình chữ nhật có hai cạnh kề bằng 4cm và 6cm. Tính độ dài đường chéo của hình chữ nhật đó
\(1,=\left(x-y\right)^2:\left(x-y\right)^2=1\\ 2,P=\left(x+y+x-y\right)^2=4x^2\\ 3,=\left(x+1\right)^2=\left(-1+1\right)^2=0\\ 4,\)
Áp dụng PTG, độ dài đường chéo là \(\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
Câu 1:
\(\left(x-y\right)^2:\left(y-x\right)^2\\ =\left(x-y\right)^2:\left(x-y\right)^2\\ =1\)
Câu 2:
\(\left(x+y\right)^2+\left(x-y\right)^2+2\left(x+y\right)\left(x-y\right)=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
Câu 3:
\(x^2+2x+1=\left(x+1\right)^2=\left(-1+1\right)^2=0\)
Câu 4:
Gọi hcn đó là ABCD có chiều dài là AB, chiều rộng là AD
Áp dụng Pi-ta-go ta có:\(AB^2+AD^2=AC^2\Rightarrow AC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
lm đC câu nào hay câu đó ạ;-;
Bài 3: Rút gọn biểu thức sau:
4) (3x + y)² + (x−y)²
7) (x-4y)² + (x+4y)
10) (2x+7)² + (−2x-3)²
12) -(x+1)²-(x-1)²
5) -(x+5)²-(x-3)²
8) -(-2x+3)²-(5x-3)²
11)-(2x - y)²-(x+3y)²
\(4.\left(3x+y\right)^2+\left(x+y\right)^2\)
\(=3x^2+6xy+y^2+x^2-2xy+y^2\)
\(=9x^2+6xy+y^2+x^2-2xy+y^2\)
\(=10x^2-4xy+2y^2\)
\(7.\left(x-4\right)^2+\left(x+4y\right)\)
\(=x^2-8x+16+x+4y\)
\(=x^2-7x+16+4y\)
\(10.\left(2x+7\right)^2+\left(-2x-3\right)^2\)
\(=4x^2+28x+49+4x^2+12x+9\)
\(=8x^2+40x+58\)
\(12.-\left(x+1\right)^2-\left(x-1\right)^2\)
\(=-\left(x^2+2x+1\right)-\left(x^2-2x+1\right)\)
\(=-x^2-2x-1+x^2+2x-1\)
\(=4x\)
\(5.-\left(x+5\right)^2-\left(x-3\right)^2\)
\(=-\left(x^2+10x+25\right)-\left(x^2-6x+9\right)\)
\(=-x^2-10-25+x^2+6x-9\)
\(=-16x-16\)
\(8.-\left(-2x+3\right)^2-\left(5x-3\right)^2\)
\(=4x^2+12x+9-25x^2+30x-9\)
\(=-21x^2+42x\)
\(11.-\left(2x-y\right)^2-\left(x+3y\right)^2\)
\(=-4x^2+4xy-y^2-\left(x^2+6xy+9y^2\right)\)
\(=-4x^2+4xy-y^2-x^2-6xy-9y^2\)
\(=-5x^2-2xy-10y^2\)
4: =9x^2+6xy+y^2+x^2-2xy+y^2
=10x^2+4xy+2y^2
5: =-x^2-10x-25-x^2+6x-9
=-4x-34
7; \(=x^2-8xy+16y^2+x+4y\)
10: \(=4x^2+28x+49+4x^2+12x+9\)
=8x^2+40x+58
11: =-4x^2+4xy-y^2-x^2-6xy-9y^2
=-5x^2-2xy-10y^2