Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên Chấn
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 23:35

\(2xy+x-3y=1\\ \Leftrightarrow4xy+2x-6y-2=0\\ \Leftrightarrow2x\left(2y+1\right)-3\left(2y+1\right)=-1\\ \Leftrightarrow\left(2x-3\right)\left(2y+1\right)=-1\)

Từ đó bạn suy ra các trường hợp thôi

 

6A3.Phương Thảo
Xem chi tiết
Thiên Chấn
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 11 2021 lúc 19:00

\(xy-2y=x^2+4\)

\(\Leftrightarrow y\left(x-2\right)=x^2+4\)

- Với \(x=2\) không phải nghiệm của pt

- Với \(x\ne2\)

\(\Rightarrow y=\dfrac{x^2+4}{x-2}=\dfrac{x^2-4+8}{x-2}=x+2+\dfrac{8}{x-2}\)

Do \(y\in Z\Rightarrow\dfrac{8}{x-2}\in Z\Rightarrow x-2=Ư\left(8\right)\)

\(\Rightarrow x-2=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow x=\left\{-6;-2;0;1;3;4;6;10\right\}\)

Thay x tương ứng vào \(y=\dfrac{x^2+4}{x-2}\) ta được các cặp nghiệm nguyên của pt:

\(\left(x;y\right)=\left(-6;-5\right);\left(-2;-2\right);\left(0;-2\right);\left(1;-5\right);\left(3;13\right);\left(4;10\right);\left(6;10\right);\left(10;13\right)\)

nguyễn ngọc yến thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2023 lúc 22:41

uses crt;

const fi='baitap.txt'

var f1:text;

x,y:integer;

begin

clrscr;

assign(f1,fi); reset(f1);

readln(f1,x,y);

writeln(sqrt(x*x+y*y):4:2);

close(f1);

readln;

end.

Ng Chau Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 20:57

A=1/3x^2y-1/3x^2y+xy^2-xy+1/2xy^2-5xy

=3/2xy^2-6xy

=3/2*1/2*1^2-6*1/2*1

=3/4-3=-9/4

『Kuroba ム Tsuki Ryoo...
27 tháng 7 2023 lúc 22:17

`@` `\text {Ans}`

`\downarrow`

`A = 1/3x^2y + xy^2 - xy + 1/2xy^2 - 5xy - 1/3x^2y`

`= (1/3 x^2y - 1/3x^2y) + (xy^2 + 1/2xy^2) + (-xy - 5xy)`

`= 3/2 xy^2 - 6xy`

Thay `x = 1/2; y = 1` vào A

`A = 3/2* 1/2 * 1^2 - 6*1/2 * 1`

`= 3/4 - 3`

`= -9/4`

Vậy, `A = -9/4.`

like game
Xem chi tiết
Edogawa Conan
15 tháng 7 2020 lúc 22:11

x2 + 2y2 + 2xy + 3y - 4 = 0

<=> 4x2 + 8y2 + 8xy + 12y - 16 = 0

<=> (4x2 + 8xy + 4y2) + (4y2 + 12y + 9) = 25

<=> (2x+  2y)2 +  (2y + 3)2 = 25 = 0 + 52 = 32 + 42

Do x;y là số nguyên và 2y + 3 là số lẻ => (2y + 3)2 thuộc {52; 32}

Xét các TH xảy ra:

+)\(\hept{\begin{cases}2x+2y=0\\2y+3=5\end{cases}}\) <=> \(\hept{\begin{cases}x+y=0\\y=1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=0\\2y+3=-5\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=3\end{cases}}\)

(Tự tính x;y)

Khách vãng lai đã xóa
Ngô Hương Lan
Xem chi tiết
Thắng Nguyễn
27 tháng 5 2016 lúc 14:50

a) (x-2)(2y-1)=6

=>x-2 và 2y-1 thuộc Ư(6)

lập bảng làm típ

b,c phân tích ra thành nt cũng tt a lập bảng

l҉o҉n҉g҉ d҉z҉
27 tháng 5 2016 lúc 14:57

a) (x-2)(2y-1)=6

=>x-2 và 2y-1 thuộc Ư(6)

lập bảng làm típ

b,c phân tích ra thành nt cũng tt a lập bảng

Thắng Nguyễn
27 tháng 5 2016 lúc 15:05

phần gợi ý cũng chép lun hả mày đúng là người vô liên xỉ đó VRCT_I Love Class 6A

NTS Channel
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 1:09

\(\Leftrightarrow4.25^x-4.5^x+1=4y^4+8y^3+12y^2+16y+41\)

\(\Leftrightarrow\left(2.5^x-1\right)^2=4y^4+8y^3+12y^2+16y+41\)

Ta có:

\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+2\right)^2+8y+37>\left(2y^2+2y+2\right)^2\)

\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2+4\left(y-1\right)\left(3y+4\right)\ge\left(2y^2+2y+5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+3\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+4\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y^2-y-8=0\left(\text{không có nghiệm nguyên}\right)\\8y^2-25=0\left(\text{không có nghiệm nguyên}\right)\\\left(y-1\right)\left(3y+4\right)=0\end{matrix}\right.\) 

\(\Rightarrow y=1\)

Thế vào pt ban đầu: \(25^x-5^x=20\)

Đặt \(5^x=t>0\Rightarrow t^2-t-20=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-4\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow5^x=5\Rightarrow x=1\)