\(xy-2y=x^2+4\)
\(\Leftrightarrow y\left(x-2\right)=x^2+4\)
- Với \(x=2\) không phải nghiệm của pt
- Với \(x\ne2\)
\(\Rightarrow y=\dfrac{x^2+4}{x-2}=\dfrac{x^2-4+8}{x-2}=x+2+\dfrac{8}{x-2}\)
Do \(y\in Z\Rightarrow\dfrac{8}{x-2}\in Z\Rightarrow x-2=Ư\left(8\right)\)
\(\Rightarrow x-2=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow x=\left\{-6;-2;0;1;3;4;6;10\right\}\)
Thay x tương ứng vào \(y=\dfrac{x^2+4}{x-2}\) ta được các cặp nghiệm nguyên của pt:
\(\left(x;y\right)=\left(-6;-5\right);\left(-2;-2\right);\left(0;-2\right);\left(1;-5\right);\left(3;13\right);\left(4;10\right);\left(6;10\right);\left(10;13\right)\)