52021 : 52019.6+52019.19
tính hợp lí
(52022+52021):52021=? giúp mình=(
( 5^2022 + 5^2021 ) : 5^2021
= 5^2022 : 5^2021 + 5^2021 : 5^2021
= 5 + 1
= 6
(52022+52021):52021
giúp mik nhe
\(=5^{2021}\left(5+1\right):5^{2021}=5+1=6\)
Rút gọn biểu thức sau : A=5+52+53+54+……+52021
Ta có A = 5 + 52 + 53 + ... + 52021
5A = 52 + 53 + 54 + ... + 52022
5A - A = ( 52 + 53 + 54 + ... + 52022 ) - ( 5 + 52 + 53 + ... + 52021 )
4A = 52022 - 5
A = \(\dfrac{5^{2022}-5}{4}\)
Tìm chữ số tận cùng của kết quả mỗi phép tính sau:
a. 4915
b. 5410
c. 1120+11921+200022
chứng minh A = 52+53+54+...+52021 chia hết cho 6
\(A=\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{2020}+5^{2021}\right)\\ =5^2.\left(1+5\right)+5^4.\left(1+5\right)+...+5^{2020}.\left(1+5\right)\\ =5^2.6+5^4.6+...+5^{2020}.6\\ =6.\left(5^2+5^4+...+5^{2020}\right)⋮6\)
2. Chứng minh rằng:
A = 5 + 52 + 53 + …+ 52021 không là số chính phương.
\(A=5+5^2+5^3+...+5^{2021}\)
\(=5\left(1+5\right)+5^2\left(1+5\right)+...+5^{2020}\left(1+5\right)\)
\(=5.6+5^2.6+...+5^{2020}.6\)
\(=6\left(5+5^2+...+5^{2020}\right)\)
Vì \(6\left(5+5^2+...+5^{2020}\right)\) ⋮6
⇒A không là số chính phương
\(A=5+5^2+5^3+...+5^{2021}⋮5\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{2022}⋮25\) (vì đều chia hết \(5^2\))
\(\Rightarrow A⋮̸5^2=25\left(5⋮̸25\right)\)
Mà số chính phương chia hết cho 5 thì chia hết cho 25
Vậy A không phải là số chính phương
cho 5= 5+52+53+...+52020+52021.Chứng tỏ rằng 4.5+5=52022
5 < 5 + 52 + 53 +....+52020 + 52021
Chứ em
5= 5+52+53+...+52020+52021.
ủa bn có nhầm j ko?
Bài 3. Tìm dư của phép chia tổng 51 + 52 + 53 + . . . + 52021 cho 31.
Bài 3. Tìm dư của phép chia tổng 51 + 52 + 53 + . . . + 52021 cho 31.
\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{2020}+5^{2021}\right)\\ =5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{2019}\left(5+5^2\right)\\ =5+\left(5+5^2\right)\left(5+5^3+...+5^{2019}\right)\\ =5+31\left(5+5^3+...+5^{2019}\right)\)
Vậy BT chia 31 dư 5
cho S=5+52+53+...+52020+52021. Chứng tỏ rằng 4.S+5=52022
\(S=5+5^2+5^3+...+5^{2020}+5^{2021}\)
=>\(5\cdot S=5^2+5^3+5^4+...+5^{2021}+5^{2022}\)
=>\(5S-S=5^2+5^3+...+5^{2021}+5^{2022}-5-5^2-5^3-...-5^{2020}-5^{2021}\)
=>\(4S=5^{2022}-5\)
=>\(4S+5=5^{2022}\)