Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Mai
Xem chi tiết
Lưu Nhật Nghĩa
Xem chi tiết
nguyen thi tra my
Xem chi tiết
nguyen thi tra my
25 tháng 12 2016 lúc 20:15

giúp mình với . mình đang cần gấp nhé!

trâm lê
Xem chi tiết
Nguyễn Hoàng Minh
1 tháng 11 2021 lúc 22:20

\(22,C\\ 23,C\\ 24,Sai.hết\\ 25,C\\ 28,A\\ 29,B\)

Rin Huỳnh
1 tháng 11 2021 lúc 22:20

22c; 23c; 24c; 25c, 29B

Nguyễn Lê Phước Thịnh
1 tháng 11 2021 lúc 22:22

Câu 22: C

Câu 23: C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 8 2017 lúc 12:03

Đáp án A

Ta có 3 x + y − 4 = 0 ⇔ y = 4 − 3 x

y 1 = − 2 y ' 1 = − 3 ⇔ 1 + b a − 2 = − 2 − 2 − a b a − 2 2 = − 3

⇔ b = 3 − 2 a − 2 − a 3 − 2 a = − 3 a 2 − 4 a + 4

⇔ b = 3 − 2 a a = 1 a = 2 ⇔ a = 1 b = 1 a = 2 b = − 1 L

Vậy  a = 1 ; b = 1 ⇒ a + b = 2

Dao Duc Binh
Xem chi tiết
Nguyễn Huy Tú
14 tháng 1 2021 lúc 21:47

Bài 1 : \(4\left(x-1\right)^2=x^2\Leftrightarrow4\left(x^2-2x+1\right)=x^2\)

\(\Leftrightarrow4x^2-8x+4-x^2=0\Leftrightarrow3x^2-8x+4=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\Leftrightarrow x=\frac{2}{3};2\)

Áp dụng với trung bình cộng 2 số : \(\frac{\frac{2}{3}+2}{2}=\frac{8}{\frac{3}{2}}=\frac{4}{3}\)

Bài 2 : Đặt A =  \(x^2-2x-3=x^2-2x+1-4=\left(x-1\right)^2-4\ge-4\)

Dấu ''='' xảy ra <=> x = 1 

Vậy GTNN A là -4 <=> x = 1

Bài 3 : \(x^2-5x+4=x^2-4x-x+4=x\left(x-4\right)-\left(x-4\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\Leftrightarrow x=1;4\)

Tổng các giá trị x là : \(1+4=5\)

Khách vãng lai đã xóa
BÌNH ĐỖ
14 tháng 1 2021 lúc 22:47

3, Tổng các giá trị của x thỏa mãn:

\(x^2-5x+4=0\)

\(\Leftrightarrow x^2-4x-x+4=0\)

\(\Leftrightarrow x\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)

Vậy tổng các giá trị x thỏa mãn phương trình: S = 4 + 1 = 5

Khách vãng lai đã xóa
Hải Đăng
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 2021 lúc 22:06

Đề bài là thế này đúng không bạn:

Cho các số thực không âm x; y thỏa mãn: \(x^2+y^2\le2\)

Tìm GTLN của: \(P=\sqrt{29x+3y}+\sqrt{3x+29y}\)

P/s: bạn nên sử dụng tính năng gõ công thức để người khác dễ đọc hơn (đây là tính năng rất đơn giản, dễ dàng làm quen, nó nằm ở biểu tượng \(\sum\) trên khung soạn thảo)

Hải Đăng
29 tháng 1 2021 lúc 21:54

Tính giá trị lớn nhất

Đỗ Thanh Tùng
Xem chi tiết
Nguyễn Trọng Chiến
1 tháng 2 2021 lúc 14:06

\(\left\{{}\begin{matrix}x+mx=2\\mx-2y=1\end{matrix}\right.\)

Nếu m=0 \(\Rightarrow\left\{{}\begin{matrix}x=2\\-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{-1}{2}< 0\end{matrix}\right.\) (L)

Nếu m≠0 \(\Rightarrow\left\{{}\begin{matrix}mx+m^2y=2m\left(1\right)\\mx-2y=1\left(2\right)\end{matrix}\right.\)

Trừ từng vế của (1) cho (2) ta được:

\(m^2y+2y=2m-1\) \(\Leftrightarrow\left(m^2+2\right)y=2m-1\) \(\Leftrightarrow y=\dfrac{2m-1}{m^2+2}\) Thay vào (2) ta được:

\(mx-2\cdot\dfrac{2m-1}{m^2+2}=1\) \(\Leftrightarrow mx=1+\dfrac{4m-2}{m^2+2}=\dfrac{m^2+2+4m-2}{m^2+2}=\dfrac{m\left(m+4\right)}{m^2+2}\) 

\(x=\dfrac{m+4}{m^2+2}\)

Vì x>0, y>0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{2m-1}{m^2+2}>0\\\dfrac{m+4}{m^2+2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m-1>0\\m+4>0\end{matrix}\right.\) Vì \(m^2+2\ge2>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>-4\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{1}{2}\) Vậy...

 

binhdd.vital Đào Đức Bìn...
Xem chi tiết