Cho 2 x + 1 n = a 0 + a 1 x + a 2 x 2 + . . . + a n x n thỏa mãn a 0 + a 1 2 + a 2 2 2 + . . . + a n 2 n = 4096 Tìm a 5
A. 2 5 C 10 5
B. 2 7 C 12 5
C. 2 5 C 12 5
D. 2 7 C 10 5
1/tim n thuoc N sao cho:
a/(2n+12) chia het cho (n+2)
b/(3n+5) chia het cho (n-2)
2/ tim x sao cho:
a/(x+3).(x^2+1)=0
b/(x+7).(x^2-36)=0
a/ \(2n+12⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Leftrightarrow\hept{\begin{cases}2n+12⋮n+2\\2n+4⋮n+2\end{cases}}\)
\(\Leftrightarrow8⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(8\right)\)
Suy ra :
+) n + 2 = 1 => n = -1 (loại)
+) n + 2 = 2 => n = 0
+) n + 2 = 4 => n = 2
+) n + 2 = 8 => n = 6
Vậy ......
b/ \(3n+5⋮n-2\)
Mà \(n-2⋮n-2\)
\(\Leftrightarrow\hept{\begin{cases}3n+5⋮n-2\\3n-6⋮n-2\end{cases}}\)
\(\Leftrightarrow11⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(11\right)\)
\(\Leftrightarrow\orbr{\begin{cases}n+2=1\\n+2=11\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=-1\left(loại\right)\\n=9\end{cases}}\)
Vậy ..
a/ \(\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-3\\x^2=-1\left(loại\right)\end{cases}}\)
Vậy ....
b/ \(\left(x+7\right)\left(x^2-36\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+7=0\\x^2-36=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-7\\x^2=36\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-7\\x=6or=-6\end{cases}}\)
Vậy ...
[2] Cho hai tập hợp A = { x ∈ N | 4x < 13 } và B = { x ∈ Z | \(x^2\) < 2 }. Tìm A ∪ B
A. A ∪ B = { 0; 1; 2 } B. A ∪ B = { -1; 0; 1; 2; 3 } C. A ∪ B = { -1; 0; 1 }
D. A ∪ B = { -1; 1; 2 }
A={0;1;2;3}
B={0;1;-1}
A hợp B={0;1;2;3;-1}
=>B
1. Cho x,y ∈ Z. Cm x2+y2 ⋮ 3 ⇔ x ⋮ 3 và y ⋮ 3
2. Cho 0 < a <1, 0 < b <1, 0 < c <1. Cmr trong các bất đẳng thức sau có ít nhất 1 bất đẳng thức sai
a(1-b) ≥ 1/4
b(1-c) ≥ 1/4
c(1-a) ≥ 1/4
3. Cho n ∈ N Cm 2n-1 và 2n+1 không đồng thời là số nguyên tố
4. Cho a,b,c ∈ R thỏa mãn \(\left\{{}\begin{matrix}a+b+c>0\\ab+bc+ac>0\\abc>o\end{matrix}\right.\) CM a>0, b>0, c>0
Bài 1:
Chiều thuận:\(x^2+y^2\vdots 3\Rightarrow x\vdots 3; y\vdots 3\)
Giả sử cả \(x\not\vdots 3, y\not\vdots 3\). Ta biết rằng một số chính phương khi chia 3 thì dư $0$ hoặc $1$.
Do đó nếu \(x\not\vdots 3, y\not\vdots 3\Rightarrow x^2\equiv 1\pmod 3; y^2\equiv 1\pmod 3\)
\(\Rightarrow x^2+y^2\equiv 2\pmod 3\) (trái với giả thiết )
Suy ra ít nhất một trong 2 số $x,y$ chia hết cho $3$
Giả sử $x\vdots 3$ \(\Rightarrow x^2\vdots 3\). Mà \(x^2+y^2\vdots 3\Rightarrow y^2\vdots 3\Rightarrow y\vdots 3\)
Vậy \(x^2+y^2\vdots 3\Rightarrow x,y\vdots 3\)
Chiều đảo:
Ta thấy với \(x\vdots 3, y\vdots 3\Rightarrow x^2\vdots 3; y^2\vdots 3\Rightarrow x^2+y^2\vdots 3\) (đpcm)
Vậy ta có đpcm.
Bài 2: > chứ không \(\geq \) nhé, vì khi \(a=b=c=\frac{1}{2}\) thì cả 3 BĐT đều đúng.
Phản chứng, giả sử cả 3 BĐT đều đúng
\(\Rightarrow \left\{\begin{matrix} a(1-b)> \frac{1}{4}\\ b(1-c)> \frac{1}{4}\\ c(1-a)>\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow a(1-a)b(1-b)c(1-c)> \frac{1}{4^3}(*)\)
Theo BĐT AM-GM thì:
\(a(1-a)\leq \left(\frac{a+1-a}{2}\right)^2=\frac{1}{4}\)
\(b(1-b)\leq \left(\frac{b+1-b}{2}\right)^2=\frac{1}{4}\)
\(c(1-c)\leq \left(\frac{c+1-c}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow abc(1-a)(1-b)(1-c)\leq \frac{1}{4^3}\) (mâu thuẫn với $(*)$)
Do đó điều giả sử là sai, tức là trong 3 BĐT trên có ít nhất một BĐT đúng.
Bài 3:
$n=2$ thỏa mãn 2 số trên đều là nguyên tố nhé.
Đặt \(\left\{\begin{matrix} 2^n-1=p\\ 2^n+1=q\end{matrix}\right.\) \(\Rightarrow pq=(2^n-1)(2^n+1)=2^{2n}-1=4^n-1\)
Vì \(4\equiv 1\pmod 3\Rightarrow 4^n\equiv 1^n\equiv 1\pmod 3\)
\(\Rightarrow 4^n-1\vdots 3\Rightarrow pq\vdots 3\Rightarrow \left[\begin{matrix} p\vdots 3\\ q\vdots 3\end{matrix}\right.\)
Nếu $p\vdots 3$ thì $p=3$
\(\Rightarrow 2^n-1=3\Rightarrow 2^n=4\Rightarrow n=2\)
\(\Rightarrow 2^n+1=2^2+1=5\in\mathbb{P}\) (thỏa mãn)
Nếu $q\vdots 3$ thì $q=3$ \(\Rightarrow 2^n+1=3\Rightarrow 2^n=2\Rightarrow n=1\)
\(\Rightarrow p=2^n-1=2^1-1=1\not\in\mathbb{P}\) (loại trừ)
Vậy $n=2$ vẫn thỏa mãn 2 số trên đều là số nguyên tố nhé.
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
Bài 1: Tính nhanh:
37,5.6,5 - 7,5.3,4 - 6,6.7,5 + 3,5.37,5
Bài 2: Tìm x, biết:
a) x^3 - 0,25x = 0
b) x^2 - 10x = - 25
c) x^3 - 13x = 0
d) x^2 + 2x - 1 = 0
Bài 3: CMR: Với mọi n thuộc Z thì:
a) (5n + 2)^2 - 4 chia hết cho 5
b) (n - 3)^2 - (n - 1)^2 chia hết cho 8
c) (n - 6)^2 - (n - 6) chia hết cho 24
Bài 4: Tìm n thuộc N để B = n^2 + 5 là số chính phương
bài 2 phần a
x^3-0,25x = 0
x*(x2 - 0,25)=0
=> TH1: x=0
TH2 : x2 - 0.25=0
(x-0,5)(x+0,5)=0
=> x=0.5
x=-0.5
Vậy x=0 , x=+ - 5
sai thì thông cảm
bài 1 tìm n thuộc z
a x. (x-7)=0
b (x=12).(x-3)=0
c (-x+5). (3-x)=0
d |2.n+1|=0
e |2.x+1|-19=-7
f x +7chia hết n+2
g 2.x+7chia hết cho x+1
a, x.(x+7) b, (x-12).(x-3)=0
Ta có : x=0(t/m) hoặc x+7=0 ta có: x-12=0 hoặc x-3=0
x=0-7 x=0+12 x= 0+3
x=-7(t/m) x=12(t/m) x=3(t/m)
d, |2.n+1|=0 2.n+1=0 2.n=0+1 2n=1 n=1:2=0,5(ko t/m)
e, |2x+1|-19=-7 2x+1-19=-7 2x+(-18)=-7 2x=-7-(-18) 2x=11 x=11:2 x=5,5(ko t/m)
g, 2x+7 chia hết cho x+1 2x+7chia hết cho x+1 suy ra 2x+7 chia hết cho 2.(x+1) suy ra 2x+1 chia hết cho 2x+2
x+1 chia hết cho x+1
(2x+7)-(2x+2)= 5 , 5 chia hết cho x+1 x thuộc Z x+1 thuộc ước cuar5 = {+-1; +-5}
ta có x+1 1 -1 5 -5
x 0 -2 4 -6 (t/m)
vậy x thuộc 0; -2; 4; -6
a; x(x-7)=0 <=>x=0 hoặc x-7=0 b;x+12 hay x-12
x-7=0 =>x=7 Nếu: x+12 thì: Nếu: x-12 thì:
Vậy : x=0;7 (x+12)(x-3)=0 <=> x+12=0 hoặc x-3=0 (x-12)(x-3)=0
* x+12=0=>x=-12 <=> x-12=0 hoặc x-3=0
* x-3=0=>x=3 * x-12=0=>x=12
* x-3=0=>3
c;(-x+5)(3-x)=0<=> -x+5=0 hoặc 3-x=0 d; /2n+1/=0<=>2n+1=0 e; /2x+1/-19=-7
*-x+5=0=>x=5 *2n+1=0=>2n=-1 /2x+1/=12
*3-x=0 => x=3 vì 2n chia hết cho 2 mà -1 ko chia hết cho2 => 2x+1= -12;12
nên:ko có giá trị n *2x+1=-12 =>2x=-13
ko có x t/m
*2x+1=12=> 2x=11
ko có x t/m
f; x+7 chia hết cho n+2 g; 2x+7 chia hết cho x+1
=> x+2+5 chia hết cho n+2 =>2(x+1)+5 chia hết cho x+1
x+2 chia hết cho n+2 nên để x+7 chia hết cho n+2 thì : x+1 chia hết cho x+1 =>2(x+1) chia hết cho x+1 nên để:
5chia hết cho n+2 =>n+2=1;5 2x+7 chia hết cho x+1 thì: 5 chia hết cho x+1 =>x+1=1;5
*n+2=1=> n=-1 * x+1=1 => x=0
* n+2=5 => n=3 * x+1=5 =>x=4
Chúc bạn học giỏi!
a, x.(x+7) b, (x-12).(x-3)=0
Ta có : x = 0 hoặc x+7=0 ta có: x-12=0 hoặc x-3=0
x=0-7 x=0+12 x= 0+3
x=-7 x=12 x=3
d, |2.n+1|=0
2.n+1=0
2.n=0+1
2n=1
n=1:2=0,5
e, |2x+1|-19=-7
2x+1-19=-7
2x+(-18)=-7
2x=-7-(-18)
2x=11
x=11:2
x=5,5
g, 2x+7 chia hết cho x+1
2x+7chia hết cho x+1
suy ra 2x+7 chia hết cho 2.(x+1)
suy ra 2x+1 chia hết cho 2x+2
x+1 chia hết cho x+1
(2x+7)-(2x+2)= 5 , 5 chia hết cho x+1 x thuộc Z x+1 thuộc ước cuar5 = {+-1; +-5}
ta có x+1 1 -1 5 -5
x 0 -2 4 -6
vậy x thuộc 0; -2; 4; -6
Cho N = ( x + 1)(x + 2)với giá trị của x thì
a, N = 0
b, N > 0
c, N < 0
b,N=(x+1)(x+2)>0
=> x+1 >0 và x+2>0 hoặc x+1<0 và x+2<0
=> x>-1 và x>-2 hoặc x<-1 và x < -2
=> x>-1 hoặc x<-2
a,N= (x+1)(x+2)=0
=> x+1=0 hoặc x+2 =0
=> x=-1 hoặc x=-2
c,N=(x+1)(x+2)<0
=> x+1 >0 và x+2<0 hoặc x+1<0 và x+2>0
=> x>-1 và x<-2 (KTM) hoặc x<-1 và x >-2
=> -2<x<-1
t k biết xài math type lắm :v
a) N=0
=>(x+1)(x+2)=0
TH1:
x+1=0
x=0-1
x=-1
TH2
x+2=0
x=0-2
x=-2
Vậy x\(\in\){-1;-2}
b)N>0
(x+1)(x+2)>0
=>x+1>0 và x+2>0 [(+).(+)]=(+)
x+1<0 và x+2<0 [(-).(-)]=(+)
TH1
x+1>0 và x+2>0
x+1>0
x>0-1
x>-1
x+2>0
x>0-2
x>-2
=>x cần tìm là x>-1 và x>-2
Bài 1.
a, Với giá trị nào của x thì: x > 3x; ( x + 1 ) ( x - 3 ) < 0; x+1/x-4 > 0
b, Có bao nhiêu số n thuộc Z sao cho ( n^2 - 2 ) ( 20 - n^2 ) > 0
Giá trị nhỏ nhất của biểu thức A=|x+1|^3+4 là..............
Biết x;y thỏa mãn |x+1|+|x-y+2|=0. Khi đó x^2+y^2+1 là..............
Giá trị lớn nhất của biểu thức A=6/|x+1|+3 là.............
Với n là số tự nhiên khác 0, khi đó giá trị biểu thức A=(1/4)^n-(1/2)^n/(1/2)^n-1 -(1/2)^n+2012 là..............
Cho x,y, z khác 0 và x-y-z=0. Tính giá trị biểu thức (1-z/x).(1-x/y).(1+y/z) là..................
AI TL GIÙM ĐI!!!!!!!!!!1 CẦN GẤP, NẾU ĐÚNG SẼ TICK CHO (KO CẦN TL HẾT, CHỈ CẦN ĐÚNG LÀ ĐC RỒI!!)
14.CMR
1. a2(a+1)+2a(a+1) chia hết cho 6 với a là số nguyên
2. a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
3. x2+2x+2>0 với mọi x
4. x2-x+1>0 với mọi x
5. -x2+4x-5<0 với mọi x
Mk chỉ lm 1 bài còn lại cứ tương tự mà lm! Bn hx lớp 7 ak?
3) Ta có: x2 + 2x + 2 = (x2 + 2x +1 ) +1 = ( x+ 1)2 +1
Vì ( x+ 1)2 \(\ge\) 0 => ( x + 1)2 + 1 \(\ge\) 1 > 0 (đpcm)
Mình giúp 2 bài cuối thôi,các bài trên bạn có thể tự giải và 1 bài @Mỹ Duyên đã giải rồi.
4.Ta có: \(x^2-x+1=x^2-2.x.\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\)\(\geq\) 0 \(\Rightarrow\) \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) \(\geq\) \(\dfrac{3}{4}\) > 1 \(\forall\) x
5.Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
vì \(-\left(x-2\right)^2\) \(\leq\) 0 \(\Rightarrow\) \(-\left(x-2\right)^2-1\) \(\leq\) \(-1\) <0 \(\forall\) x
Bài 3,4,5 các bn kia đã làm rồi nên mk ko cần làm lại nhé:
1,a2(a+1)+2a(a+1)=(a+1)(a2+2a)
=(a+1)\(\left[a\left(a+2\right)\right]\)=a(a+1)(a+2)
Do a;a+1;a+2 là 3 số nguyên liên tiếp nên có một số chia hết cho 3; chia hết cho 2.
\(\Rightarrow\)a(a+1)(a+2)\(⋮\)6 hay a2(a+1)+2a(a+1)\(⋮\)6 (a nguyên)
2, a(2a-3)-2a(a+1)=2a2-3a-2a2-2a=-5a
Do -5a\(⋮\)5 (\(\forall\)a), suy ra a(2a-3)-2a(a+1)\(⋮\)5