Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen hoan
Xem chi tiết
dinh huong
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Minh Nguyen
13 tháng 6 2020 lúc 16:13

Từ giả thiết : \(abc=b+2c\)

\(\Leftrightarrow\frac{b+2c}{bc}=a\)

\(\Leftrightarrow\frac{1}{c}+\frac{2}{b}=a\)(1)

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Ta có : \(P=\frac{3}{b+c-a}+\frac{4}{c+a-b}+\frac{5}{a+b-c}\)

\(=\frac{1}{b+c-a}+\frac{1}{c+a-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)\)

\(\ge\frac{4}{2c}+2\cdot\frac{4}{2b}+3\cdot\frac{4}{2a}=\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)

Áp dụng (1) vào \(P\)\(\frac{2}{c}+\frac{4}{b}+\frac{6}{c}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)

Vậy \(Min_P=4\sqrt{3}\Leftrightarrow a=b=c=\sqrt{3}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
14 tháng 6 2020 lúc 16:59

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y},x>0,y>0\)

\(P=\frac{1}{b+c-a}+\frac{1}{a+c-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)

\(\Rightarrow P\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)

Từ giả thiết ta có: \(\frac{1}{c}+\frac{2}{b}=a\) nên \(\frac{2}{c}+\frac{4}{b}+\frac{6}{a}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)

Vậy giá trị nhỏ nhất của P=\(4\sqrt{3}\) đạt được khi \(a=b=c=\sqrt{3}\)

Khách vãng lai đã xóa
Phạm Tuấn Đạt
25 tháng 6 2020 lúc 21:56

cô lấy đề thầy cẩn full luôn ạ cô

Khách vãng lai đã xóa
Lê Hoàng Hiếu
Xem chi tiết
missing you =
7 tháng 11 2021 lúc 7:10

\(A=\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\)

\(=\dfrac{3}{c+a-b}+\dfrac{3}{a+b-c}+\dfrac{2}{b+c-a}+\dfrac{2}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)

\(=3\left(\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)+2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)

\(do\) \(a,b,c\) \(là\) \(độ\) \(dài\) \(3\) \(cạnh\) \(\Delta\Rightarrow a,b,c\) \(không\) \(âm\) \(\) 

\(và\left\{{}\begin{matrix}b+c-a>0\\c+a-b>0\\a+b-c>0\end{matrix}\right.\) \(\Rightarrowáp\) \(dụng\) \(Am-GM\)

\(\Rightarrow\left\{{}\begin{matrix}3\left(\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)\ge3.\dfrac{4}{c+a-b+a+b-c}\ge\dfrac{12}{2a}\ge\dfrac{6}{a}\\2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)\ge2.\dfrac{4}{b+c-a+a+b-c}\ge\dfrac{8}{2b}\ge\dfrac{4}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{4}{b+c-a+c+a-b}\ge\dfrac{4}{2c}\ge\dfrac{2}{c}\\\end{matrix}\right.\)

\(\Rightarrow A\ge\dfrac{6}{a}+\dfrac{4}{b}+\dfrac{2}{c}\)

dinh huong
Xem chi tiết
Lấp La Lấp Lánh
31 tháng 8 2021 lúc 17:48

Ta có: \(abc=b+2c\)

\(\Rightarrow a=\dfrac{b+2c}{bc}\)\(\Rightarrow a=\dfrac{1}{c}+\dfrac{2}{b}\)

Áp dụng bất đẳng thức: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

Ta có: \(\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\)

\(=\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}+2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)+3\left(\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)\ge\dfrac{4}{b+c-a+c+a-b}+2.\dfrac{4}{b+c-a+a+b-c}+3.\dfrac{4}{c+a-b+a+b-c}=\dfrac{4}{2c}+2.\dfrac{4}{2b}+3.\dfrac{4}{2a}=\dfrac{2}{c}+\dfrac{4}{b}+\dfrac{6}{a}=2\left(\dfrac{1}{c}+\dfrac{2}{b}+\dfrac{3}{a}\right)=2\left(a+\dfrac{3}{a}\right)\ge2.2\sqrt{\dfrac{a.3}{a}}=4\sqrt{3}\)

(bất đẳng thức Cauchy cho 2 số dương)

\(ĐTXR\Leftrightarrow a=b=c=\sqrt{3}\)

 

Big City Boy
Xem chi tiết
Cao Duc Huy
Xem chi tiết
Mai Nguyen
Xem chi tiết
Hi Mn
Xem chi tiết