\(A=\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\)
\(=\dfrac{3}{c+a-b}+\dfrac{3}{a+b-c}+\dfrac{2}{b+c-a}+\dfrac{2}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)
\(=3\left(\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)+2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)
\(do\) \(a,b,c\) \(là\) \(độ\) \(dài\) \(3\) \(cạnh\) \(\Delta\Rightarrow a,b,c\) \(không\) \(âm\) \(\)
\(và\left\{{}\begin{matrix}b+c-a>0\\c+a-b>0\\a+b-c>0\end{matrix}\right.\) \(\Rightarrowáp\) \(dụng\) \(Am-GM\)
\(\Rightarrow\left\{{}\begin{matrix}3\left(\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)\ge3.\dfrac{4}{c+a-b+a+b-c}\ge\dfrac{12}{2a}\ge\dfrac{6}{a}\\2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)\ge2.\dfrac{4}{b+c-a+a+b-c}\ge\dfrac{8}{2b}\ge\dfrac{4}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{4}{b+c-a+c+a-b}\ge\dfrac{4}{2c}\ge\dfrac{2}{c}\\\end{matrix}\right.\)
\(\Rightarrow A\ge\dfrac{6}{a}+\dfrac{4}{b}+\dfrac{2}{c}\)