Với a,b,c là độ dài ba cạnh của một tam giác, cmr 3/(b+c-a)+4/(c+a-b)+5/(a+b-c)≥6/a+4/b+2/c
Cho tam giác ABC có độ dài ba cạnh là: a,b,c. Thỏa mãn điều kiện a3+b3+c3= 3abc. Chứng minh tam giác ABC là tam giác đều
Cho a,b,c là độ dài 3 cạnh của tam giác ABC thỏa mãn hệ thức: a³ + b³ + c³ = 3abc. Hỏi tam giác ABC là tam giác gì?
Cho a;b;c là 3 cạnh tam giác thỏa mãn \(2c+b=abc\) . Tìm GTNN của biểu thức
\(A=\frac{3}{-a+b+c}+\frac{4}{a-b+c}+\frac{5}{a+b-c}\)
Gọi a, b, c là độ dài 3 cạnh của tam giác ABC, thỏa mãn:
ab/(b+c) + bc/(a+c) + ac/(a+b) = ac/(b+c) + ab/(a+c) + bc/(a+b)
Chứng minh tam giác ABC cân.
Gọi a, b, c là độ dài 3 cạnh của tam giác ABC, thỏa mãn:
ab/(b+c) + bc/(a+c) + ac/(a+b) = ac/(b+c) + ab/(a+c) + bc/(a+b)
Chứng minh tam giác ABC cân.
Gọi a, b, c là độ dài 3 cạnh của tam giác ABC, thỏa mãn:
ab/(b+c) + bc/(a+c) + ac/(a+b) = ac/(b+c) + ab/(a+c) + bc/(a+b)
Chứng minh tam giác ABC cân.
CMR A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2c2a2 < 0 với a, b, c là độ dài ba cạnh của một tam giác
chứng minh rằng nếu a,b,c thỏa mãn là độ dài 3 cạnh của 1 tam giác ABC thì a^2(b-c)-b^2(a-c)+c^2(a-b)=0 thì ABC cân