Cho tam giác ABC vuông tại A , A B = 3 c m , A C = 4 c m . Tính thể tích khối nón tròn xoay sinh ra khi quay tam giác ABC quanh AB.
A. 16 c m 3
B. 80 π 3 c m 3
C. 16 π c m 3
D. 80 c m 3
Bài 1: Cho tam giác ABC vuông tại A.CMR: \(m^2_b +m^2_c =5m^2_a\)
Bài 2: Cho tam giác ABC thỏa mãn \(\frac{a^3+b^3-c^3}{a+b-c}=c^2\). Tìm số đo của \(\widehat{C}\)
Bài 3: Nhận dạng tam giác ABC nếu \(\frac{a^3+c^3-b^3}{a+c-b}=b^2\) và \(sinA.sinC=\frac{3}{4}\)
1.
Áp dụng công thức trung tuyến:
\(m_b^2+m_c^2=\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2a^2+2b^2-c^2}{4}\)
\(=\dfrac{4a^2+b^2+c^2}{4}\)
\(=\dfrac{9a^2+b^2+c^2-5a^2}{4}\)
\(=\dfrac{9\left(b^2+c^2\right)+b^2+c^2-5a^2}{4}\)
\(=5\left(\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\right)=5m_a\)
Cho tam giác ABC vuông tại A, tại C kẻ đường phân giác cắt BC tại D. Từ D kẻ DE vuông góc BC a)c/m tam giác ACD=tam giác ACE b)c/m tam giác ADE cân c)cho AB=12 cm, AC=13. Tính BC, tính chu vi tam giác ABC
Sửa đề: cắt AB tại D.
a) Sửa đề: ΔACD=ΔECD
Xét ΔACD vuông tại A và ΔECD vuông tại E có
CD chung
\(\widehat{ACD}=\widehat{ECD}\)(CD là tia phân giác của \(\widehat{ACE}\))
Do đó: ΔACD=ΔECD(Cạnh huyền-góc nhọn)
b) Ta có: ΔACD=ΔECD(cmt)
nên DA=DE(Hai cạnh tương ứng)
Xét ΔDAE có DA=DE(cmt)
nên ΔDAE cân tại D(Định nghĩa tam giác cân)
Cho tam giác ABC vuông góc tại A đường cao AD, kẻ: DE vuông góc AC, DF vuông góc AB a)C/m tam giác DCD đồng dạng tam giác ACB b) c/m tam giác DBA đồng dạng tam vừa ABC c) c/m tam giác DBa đồng dạng tam giác DAC
a: Sửa đề: ΔDCA đồng dạng với ΔACB
Xét ΔDCA vuông tại D và ΔACB vuông tại A có
\(\widehat{DCA}\) chung
Do đó: ΔDCA~ΔACB
b: Xét ΔDBA vuông tại D và ΔABC vuông tại A có
\(\widehat{DBA}\) chung
Do đó: ΔDBA~ΔABC
c: Xét ΔDCA vuông tại D và ΔDAB vuông tại D có
\(\widehat{DCA}=\widehat{DAB}\left(=90^0-\widehat{B}\right)\)
Do đó: ΔDCA~ΔDAB
Cho tam giác ABC vuông tại A có góc B= 50 độ nội tiếp (O,4cm) . Vẽ dây AD vuông AB tại I
a) C/m ba điểm B , I , C thẳng hàng
b) Giải tam giác vuông ABC
c) C/m IB.IC=IA.ID
a: Sửa đề: vẽ dây AD vuông góc với đường kính của (O) tại I
ΔABC vuông tại A
=>ΔABC nội tiếp đường tròn đường kính BC
=>BC là đường kính của (O)
mà AD vuông góc với đường kính của (O)
nên AD\(\perp\)BC tại I
=>B,I,C thẳng hàng
b: BC=2*OB=8cm
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-50^0=40^0\)
Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}\)
=>\(\dfrac{AB}{8}=sin40\)
=>\(AB\simeq5,14\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{8^2-5.14^2}\simeq6,13\left(cm\right)\)
c: ΔOAD cân tại O
mà OI là đường cao
nên I là trung điểm của AD
ΔABC vuông tại A có AI là đường cao
nên \(AI^2=IB\cdot IC\)
=>\(IB\cdot IC=IA\cdot ID\)
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC vuông tại A. Trên tia đối AB lấy E sao cho AB=AE a)c/m tam giác ABC=yam giác AEC b) vẻ đường trung tuyến BH của tam giác BEC , BH cắt AC tại M . Tính CM biết CA = 18cm c)Từ A kẻ đường thẳng song song EC cắt BC tại K . c/m 3 điểm E,M,K thẳng hàng
a,xét tam giác abc và tam giác cea có;
AB=AE(GT)
BAC^=EAC^(=90)
AC CHUNG
do đó tam giác ABC = tam giác CAE(CGC)
b. trong tam giác BCE có CA và BH lận lượt là trung tuyến cắt nhau tajim.suy ra M là trọng tâm tam giác
suy ra CM= 2/3. CA
suy ra CM=2/3.18
suy ra CM =12cm
Cho tam giác ABC. Vẽ phân giác ngoài tại A của tam giác ABC. Từ B kẻ d//AD.
a) C/m: d cắt AC tại E.
b) C/m: góc ABE = góc AEB.
c) Từ B kẻ b vuông góc với AD, từ A kẻ a//b. C/m: b vuông góc với d và a là pg góc BAC.
a: d//AD
AD cắt AC tại A
Do đó: d cắt AC tại E
b: Gọi Ax là tia đối của tia AB
=>góc xAC là góc ngoài tại đỉnh A của ΔABC
=>AD là phân giác của góc xAC
AD//BE
=>góc xAD=góc ABE và góc DAE=góc AEB
mà góc xAD=góc DAE
nên góc ABE=góc AEB
c: b vuông góc AD
d//AD
Do đó: b vuông góc d
Sửa đề một chút nhé: Tia phân giác của góc A cắt BC tại I
Câu a
Xét tam giác ABI và tam giác ADI có
AB = AD
\(\widehat{BAI}=\widehat{DAI}\)
AI chung
=> Tam giác ABI = tam giác ADI (c.g.c)
=> \(\widehat{ABI}=\widehat{ADI}\) mà \(\widehat{ABI}=90^o\)
=> \(\widehat{ADI}=90^o\)
=>tam giác ADI vuông tại D
b) Có tam giác ABI = ADI
=> BI = DI
Xét tam giác EBI và CDI có
góc EBI = góc CDI = 90 độ (do tam giác ABC vuông tại A và tam giác ADI vuông tại D)
BI = DI
góc BIE = góc DIC (đối đỉnh)
=> Tam giác BIE = tam giácDIC (g.c.g)
=> IE = IC
=> tam giác IEC cân tại I
c) Có tam giác BIE = tam giác DIC => BE = DC
Lại có AB = AD (gt)
=> AB + BE = AD + DC => AE = AC
=> tam giác AEC cân tại A
mà góc BAC hay góc EAC = 60 độ
=> tam giác AEC đều
Cho tam giác ABC vuông tại A. trên cạnh BC lấy điểm D sao cho BD = BA. Tia phân giác góc B cắt AC ở E
a. C/m: Tam giác BEA = tam giác BED.
b. Qua C vẽ đường thẳng vuông góc với BE tại H. CH cắt AB tại F. C/m: BF = BC.
c. C/m: tam giác BAC = tam giác BDF và c/m: D, E, F thẳng hàng
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
b: Xét ΔBFC có
BH là đường cao
BH là đường phân giác
Do đó: ΔBFC cân tại B
c: Ta có: ΔBFC cân tại B
=>BF=BC
Xét ΔBDF và ΔBAC có
BD=BA
\(\widehat{DBF}\) chung
BF=BC
Do đó: ΔBDF=ΔBAC
=>\(\widehat{BDF}=\widehat{BAC}=90^0\)
Ta có: ΔBAE=ΔBDE
=>\(\widehat{BAE}=\widehat{BDE}\)
mà \(\widehat{BAE}=90^0\)
nên \(\widehat{BDE}=90^0\)
mà \(\widehat{BDF}=90^0\)
và DE,DF có điểm chung là D
nên D,E,F thẳng hàng
Cho tam giác ABC cân tại A ( A<90 độ) Ba đường cao AH;BD;CE
a) C/M tam giác ABC=ACE
b) C/M tam giác ABC cân tại H
c) Kẻ HM vuông góc AC( M thuộc AC) C/M DM=MC
d) Gọi I là trung điểm của HD. C/M AH vuông góc với MI