Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2021 lúc 21:22

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)

Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 6 2021 lúc 19:03

\(g'\left(x\right)=0\Rightarrow x=0\)

Ta thấy \(g\left(x\right)\) đồng biến trên \(\left(0;+\infty\right)\)

\(\Rightarrow g\left(f\left(x\right)\right)\) đồng biến khi \(f\left(x\right)\ge0\)

\(\Rightarrow g\left(f\left(x\right)\right)\) đồng biến trên \(\left(3;+\infty\right)\) khi \(f\left(x\right)\ge0\) ; \(\forall x>3\)

\(\Leftrightarrow x^2-4x\ge-m\) ; \(\forall x>3\)

\(\Leftrightarrow-m\le\min\limits_{x>3}\left(x^2-4x\right)\)

\(\Rightarrow-m\le-3\Rightarrow m\ge3\)

77- 27- Phan Hoàng Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2022 lúc 14:24

a: f(2)=4-3=1

f(0)=-3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 4 2019 lúc 17:47

Chọn A

Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.

Vậy giá trị lớn nhất M = f(2)

Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .

Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.

Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).

=> f(0) > f(4)

Vậy giá trị nhỏ nhất m = f(4)

sgfr hod
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 12 2023 lúc 22:37

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\sqrt{2x-4}+3\)

\(=\sqrt{2\cdot2-4}+3=3\)

\(f\left(2\right)=\sqrt{2\cdot2-4}+3=0+3=3\)

\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\dfrac{x+2}{x^2-2mx+m^2+2}\)

\(=\dfrac{2+2}{2^2-2m\cdot2+m^2+2}=\dfrac{4}{m^2-4m+6}\)

Để hàm số f(x) liên tục trên R thì f(x) liên tục tại x=2

=>\(\dfrac{4}{m^2-4m+6}=3\)

=>\(4=3\left(m^2-4m+6\right)\)

=>\(3m^2-12m+18-4=0\)

=>\(3m^2-12m+14=0\)

\(\Leftrightarrow3m^2-12m+12+2=0\)

=>\(3\left(m-2\right)^2+2=0\)(vô lý)

=>\(m\in\varnothing\)

Scarlett
Xem chi tiết
Gia Huy
20 tháng 6 2023 lúc 16:17

Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)

\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)

Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 7 2019 lúc 10:36

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2023 lúc 20:22

loading...  

Anh Tuấn Phạm
Xem chi tiết
Diễm Anh Nguyễn Thị
23 tháng 12 2021 lúc 21:38

a)  Cho hàm số y = f(x) = -2x + 3.

Ta có: f(-2)= -2.(-2)+3

                 = 4+3=7

Ta có: f(0)= -2.0+3

                = 0+3=3

Ta có: f(

Akai Haruma
23 tháng 12 2021 lúc 21:41

Lời giải:

a.

$f(-2)=(-2)(-2)+3=7$

$f(0)=(-2).0+3=3$

$f(\frac{-1}{2})=(-2).\frac{-1}{2}+3=4$

b.

$f(x)=-2x+3=5$

$\Rightarrow -2x=2$

$\Rightarrow x=-1$

$f(x)=-2x+3=1$

$\Rightarrow -2x=1-3=-2$

$\Rightarrow x=1$