Sử dụng hằng đẳng thức để thực hiện phép chia:
a) (2 x 4 - 8 x 2 + 8): (4 - 2 x 2 );
b) (125 - 8 x 3 ):(4x - 10);
c) (1 + 3 x 3 + 3 x 6 + x 9 ):(-1 - x 3 ).
Sử dụng hằng đẳng thức để thực hiện phép chia:
a) ( x 2 - 2x + l) :(x - 1);
b) (8 x 3 +27): (2x + 3);
c) ( x 6 - 6 x 4 + 12 x 2 - 8): (2 - x 2 ).
a) Biến đổi x 2 – 2x + 1 = ( x – 1 ) 2 ; thực hiện chia được kết quả x – 1.
b) Biến đổi 8 x 3 + 27 = (2x + 3)(4 x 2 – 6x + 9); thực hiện phép chia được kết quả 4 x 2 – 6x + 9.
c) Phân thích x 6 – 6 x 4 + 12 x 2 – 8 = ( x 2 – 2)( x 4 – 4 x 2 + 4); thực hiện phép chia được kết quả - x 4 + 4 x 2 – 4.
bài 3 ; áp dụng hằng đẳng thức để thực hiện phép chia
h, ( 27x mũ 3 - 8 ) : ( 3x - 2 )
f, ( x mũ 2 - 2xy mũ 2 + y mũ 2 ) : ( x - y mũ 2 )
g, ( x mũ 4 - 2x mũ 2 + 1 ) : ( 1 - x mũ 2 )
h, \(27x^3-8=\left(3x-2\right)\left(9x^2+6x+4\right)\)
\(\Rightarrow\left(27x^3-8\right):\left(3x-2\right)\\ =\left(3x-2\right)\left(9x^2+6x+4\right):\left(3x-2\right)\\ =9x^2+6x+4\)
g, \(x^4-2x^2+1=\left(x^2-1\right)^2\)
\(\Rightarrow\left(x^4-2x^2+1\right):\left(1-x^2\right)\\ =\left(x^2-1\right)^2:\left(1-x^2\right)\\ =x^2-1\)
Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia:
a) (x2 + 2xy + y2) : (x + y)
b) (125x3 + 1) : (5x + 1)
c) (x2 – 2xy + y2) : (y – x)
Lời giải:
a) (x2 + 2xy + y2) : (x + y)
= (x + y)2 : (x + y)
= x + y
b) (125x3 + 1) : (5x + 1)
= [(5x)3 + 1] : (5x + 1)
= (5x + 1)[(5x)2 – 5x + 1]] : (5x + 1)
= (5x)2 – 5x + 1
= 25x2 – 5x + 1
c) (x2 – 2xy + y2) : (y – x)
= (x – y)2 : [-(x – y)]
= -(x – y)
= y – x
Hoặc (x2 – 2xy + y2) : (y – x)
= (y2 – 2yx + x2) : (y – x)
= (y – x)2 : (y – x)
= y – x
\(\text{a) (x^2 + 2xy + y^2) : (x + y)}\\ \left(x+y\right)^2:\left(x+y\right)=x+y\)
Sử dụng hằng đẳng thức rồi thực hiện phép chia : (2x4-8x2+8) : (4-2x2)
(2x4-8x2+8) : (4-2x2)
= 2(x4-4x2+4) : 2(2-x2)
= (x4-4x2+4) : (2-x2)
= (x2 - 2) : (2-x2)
= - 1
\(2x^4+8x^2+8=2\left(x^4+4x^2+4\right)=2\left(x^2+2\right)^2\)
\(\left(4-2x^2\right)=2\left(2-x^2\right)\Rightarrow\frac{2x^4+8x^2+8}{4-2x^2}=\frac{2\left(x^2+2\right)^2}{2\left(2-x^2\right)}=\frac{\left(x^2+2\right)^2}{2-x^2}\)
Nếu không sai đề thì tự phân tích rồi thực hiện phép chia đa thức
sử đụng hằng đẳng thức để thực hiện phép chia sau:
a, (x2+4x+4):(x+2)
b, (x3-1):(x-1)
c, (x3+6x2+12x+8):(x+2)
giúp mình nha
a) \(x^2+4x+4=x^2+2.2x+2^2=\left(x+2\right)^2\)
\(\left(x^2+4x+4\right)\div\left(x+2\right)=x+2\)
b) \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)
\(\left(x^3-1\right)\div\left(x-1\right)=x^2+x+1\)
c) \(x^3+6x^2+12x+8=x^3+3.x^2.2+3.x.2^2+2^3=\left(x+2\right)^3\)
\(\left(x^3+6x^2+12x+8\right)\div\left(x+2\right)=\left(x+2\right)^2\)
Thực hiện các phép chia:
a) \(\left( {4{x^3}{y^2} - 8{x^2}y + 10xy} \right):\left( {2xy} \right)\) b) \(\left( {7{x^4}{y^2} - 2{x^2}{y^2} - 5{x^3}{y^4}} \right):\left( {3{x^2}y} \right)\)
`a, (4x^3y^2 - 8x^2y + 10xy) : 2xy`
`= 2x^2y - 4x + 5`.
`b, 7x^4y^2 - 2x^2y^2 - 5x^3y^4 : 3x^2y`
`= 7/3 x^2y - 3/2y - 5/3xy^3`
bài 3 ; áp dụng hằng đẳng thức để thực hiện phép chia
a, ( 4x mũ 2 + 12xy + 9y mũ 2 ) : ( 2x + 3y )
d, ( x mũ 2 + 6xy + 9y mũ 2 ) : ( x + 3y )
e, ( 64y mũ 3 - 27 ) : ( 4y - 3 )
a: \(\left(4x^2+12xy+9y^2\right):\left(2x+3y\right)=\left(2x+3y\right)^2:\left(2x+3y\right)=2x+3y\)
d: \(\left(x^2+6xy+9y^2\right):\left(x+3y\right)=\left(x+3y\right)^2:\left(x+3y\right)=x+3y\)
e: \(\dfrac{64y^3-27}{4y-3}=\dfrac{\left(4y-3\right)\left(16y^2+12y+9\right)}{4y-3}=16y^2+12y+9\)
a, \(4x^2+12xy+9y^2=\left(2x+3y\right)^2\)
\(\Rightarrow\left(4x^2+12xy+9y^2\right):\left(2x+3y\right)\)
\(=\left(2x+3y\right)^2:\left(2x+3y\right)\\ =2x+3y\)
b,\(x^2+6xy+9y^2=\left(x+3y\right)^2\)
\(\Rightarrow\left(x^2+6xy+9y^2\right):\left(x+3y\right)\\ =\left(x+3y\right)^2:\left(x+3y\right)\\ =x+3y\)
c, \(64y^3-27=\left(4y-3\right)\left(16y^2+12y+9\right)\)
\(\Rightarrow\left(64x^3-27\right):\left(4y-3\right)\\ =\left[\left(4y-3\right)\left(16x^2+12x+9\right)\right]:\left(4y-3\right)\\ =16x^2+12x+9\)
Bài 3: Áp dụng đẳng thức trên thực hiện phép nhân bằng cách cho a, b là một số cho trước. ( mỗi ý 10 câu, rồi tính...) Hãy tính:
1) ( x+3)( x+ 5) =
2) (x+6)(x+2)
3) (x+3)(x+7)
4) ( x- 3)( x-5)
5) (x-4)(x-9)
6) (x-10)(x-12)
7) (x+3)(x-5)
8) (x_8)(x+3)
9) (x+8)(x-4) 10) ( 2x-1)( 3x-2)
11)(3x+1)( 5x-3)
ý bạn là nhân đa thức với đa thức hay sao ạ?
Rút gọn biểu thực rồi tính : sử dụng các hằng đẳng thức
b) M = (x + 3) ^ 2 + (x - 3)(x - 3) - 2(x + 2)(x - 4) khi 2 thỏa mãn với 2x + 1 = 0
2) V = (3x + 4) ^ 2 - (x + 4)(x - 4) - 10x. khi 2 thỏa mãn với 10x + 1 = 0 .
3) P = (x + 1) ^ 2 - (2x - 1) ^ 2 + 3(x - 2)(x + 2) với x = 1
4) Q = (x - 3)(x + 3) + (x - 2) ^ 2 - 2x(x - 4) với x = - 1 .
Lời giải:
1.
$M=(x^2+6x+9)+(x^2-9)-2(x^2-2x-8)$
$=x^2+6x+9+x^2-9-2x^2+4x+16=(x^2+x^2-2x^2)+(6x+4x)+(9-9+16)$
$=10x+16=5(2x+1)+11=5.0+11=11$
2.
$V=(9x^2+24x+16)-(x^2-16)-10x=9x^2+24x+16-x^2+16-10x$
$=(9x^2-x^2)+(24x-10x)+(16+16)=8x^2+14x+32$
$=8(\frac{-1}{10})^2+14.\frac{-1}{10}+32=\frac{767}{25}$
3.
$P=(x^2+2x+1)-(4x^2-4x+1)+3(x^2-4)$
$=x^2+2x+1-4x^2+4x-1+3x^2-12$
$=(x^2-4x^2+3x^2)+(2x+4x)+(1-1-12)$
$=6x-12=6.1-12=-6$
4.
$Q=(x^2-9)+(x^2-4x+4)-2x^2+8x$
$=x^2-9+x^2-4x+4-2x^2+8x$
$=(x^2+x^2-2x^2)+(-4x+8x)-9+4$
$=4x-5=4(-1)-5=-9$