Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 6 2018 lúc 6:30

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phạm Ngọc Duyên
Xem chi tiết
Phuc Nguyên
18 tháng 10 2016 lúc 19:05

Có: a/b=c/d => a/c=b/d

=>(a+b)/(c+d)=a/c

=>(a+b)^2/(c+d)^2=(a/c)^2=a/c.b/d=ab/cd

=> dpcm

Ngốc Ngố Lại
Xem chi tiết
Trịnh Quang Hùng
21 tháng 8 2015 lúc 22:36

Ta sẽ áp dụng BĐT sau vào bài tập này \(\frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p}\le\frac{\left(a+b+c\right)^2}{m+n+p}\)dấu "=" xảy ra khi \(\frac{a}{m}=\frac{b}{n}=\frac{c}{p}\)

Ta có \(p-a=\frac{a+b+c}{2}-a=\frac{a+b+c-2a}{2}\)\(\Leftrightarrow\)\(p-a=\frac{b+c-a}{2}\)

\(\Leftrightarrow\)\(\frac{1}{p-a}=\frac{2}{b+c-a}\).Tương tự\(\frac{1}{p-b}=\frac{2}{a+c-b}\);\(\frac{1}{p-c}=\frac{2}{b+a-c}\)

nên \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}=2\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)\)

Áp dụng BĐT trên ta có \(\frac{1}{b+c-a}=\frac{\left(1+1-1\right)^2}{b+c-a}\ge\frac{1}{c}+\frac{1}{b}-\frac{1}{a}\);\(\frac{1}{a+c-b}\ge\frac{1}{a}+\frac{1}{c}-\frac{1}{b}\);\(\frac{1}{a+b-c}\ge\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\)

Vậy \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\right)\)

 

Kết bạn với mình có gì tiện hỏi nhau nha có gì khó cứ gửi

Vũ Phương Anh
8 tháng 10 2017 lúc 11:59

bài này cũng gần giống nè giúp mk vs  

cho a b c là độ dài 3 cạnh tam giác p là nửa chu vi ab/(p-c) + bc/(p-a) + ca/(p-b)>=4p

Nguyễn Hữu Hoàng Hải Anh
31 tháng 3 2018 lúc 20:39

đây là toán lớp 8 hôm qua cô vừa dạy xog này dễ v

Thai Nguyen
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
14 tháng 8 2018 lúc 10:38

Bạn tham khảo cách chứng minh tại đây :

Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến

Áp dụng : Theo BĐT \(AM-GM\) ta có :

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân vế theo vế ta được :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)

Dấu \("="\) xảy ra khi \(a=b=c\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
27 tháng 5 2017 lúc 10:33

Áp dụng bất đẳng thức Cô-si cho hai số không âm, ta có :

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) (1)

\(\dfrac{b+c}{2}\ge\sqrt{bc}\) (2)

\(\dfrac{c+a}{2}\ge\sqrt{ca}\) (3)

Cộng từng vế bất đẳng thức (1), (2), (3) ta được :

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Vậy bất đẳng thức đã được chứng minh

Mở rộng cho bốn số a, b, c, d không âm, ta có bất đẳng thức :

\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)

Mở rộng cho năm số a, b, c, d, e không âm, ta có bất đẳng thức : \(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)

Hiếu Cao Huy
25 tháng 4 2017 lúc 5:41

áp dụng BĐT AM-GM với 2 số không âm

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

cộng các vế của BĐT ta có

\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

chia cả hai vế của BĐT cho 2 ta có đpcm

Nguyenn Nguyenn
Xem chi tiết
Nguyenn Nguyenn
27 tháng 4 2021 lúc 18:23

giúp em với năn nỉ m,n 

Tôm Tớn
Xem chi tiết
nguyễn đức duy
30 tháng 7 2015 lúc 23:11

áp dụng bất đẳng thức cô- si, ta có:

\(a+b\ge2\sqrt{ab}\)  \(\left(1\right)\)

\(b+c\ge2\sqrt{bc}\)  \(\left(2\right)\)

\(c+a\ge2\sqrt{ca}\)  \(\left(3\right)\)

Cộng (1),(2),(3) vế theo vế, ta được:

\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(\Leftrightarrow\) \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Dấu " = " xảy ra <=> \(a=b=c\)

Phương Ngọc Hùng
Xem chi tiết
mikusanpai(՞•ﻌ•՞)
23 tháng 2 2021 lúc 21:20

ta có:a(b−c)−a(b+d)=−a(c+d)

VT(vế trái)=a(b−c)−a(b+d)

     =ab−ac−ab−ad

     =(ab−ab)−ac−ad

     =0−a(c+d)

     =−a(c+d)=VP(vế phải)

Minh Nhân
23 tháng 2 2021 lúc 21:21

\(a\left(b-c\right)-a\left(b+d\right)\)

\(=a\left(b-c-b-d\right)\)

\(=a\left(-c-d\right)\)

\(=-a\left(c+d\right)\left(dpcm\right)\)

Lưu Quang Trường
23 tháng 2 2021 lúc 21:22

Ta có: a(b-c)-a(b+d)

       =ab-ac-ab-ad

       =-ac-ad=-(ac+ad)=-a(c+d)

Vì -a(c+d)=-a(c+d) nên a(b-c)-a(b+d)=-a(c+d)

 

Phạm Mỹ Hạnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2022 lúc 10:47

a: \(\Leftrightarrow\left(a+1\right)^2-4a\ge0\)

hay \(\left(a-1\right)^2>=0\)(luôn đúng)

b: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)=VP\)