Vectơ n → = 1 ; 2 là vectơ pháp tuyến của đường thẳng có phương trình nào sau đây .
A. x = 1 + 2 t y = 4 - t
B. x = 1 - 2 t y = 4 - t
C. x = 1 + 2 t y = 4 + t
D. x = 1 + t y = 4 + 2 t
Câu 1: Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA,AB a) Chứng minh rằng: Vectơ AM+ Vectơ BN+ Vectơ CP= Vectơ 0
b) Chứng minh rằng Vectơ OA+ Vectơ OB+ Vectơ OC= Vectơ OM + Vectơ ON + Vectơ OP Với O bất kì
Do M là trung điểm BC nên: \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
Tương tự: \(\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}\) ; \(\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)
Cộng vế:
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)
\(=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)+\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)=\overrightarrow{0}\)
b. Từ câu a ta có:
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OM}+\overrightarrow{BO}+\overrightarrow{ON}+\overrightarrow{CO}+\overrightarrow{OP}=\overrightarrow{0}\)
\(\Leftrightarrow-\overrightarrow{OA}+\overrightarrow{OM}-\overrightarrow{OB}+\overrightarrow{ON}-\overrightarrow{OC}+\overrightarrow{OP}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP}\) (đpcm)
Cho tam giác ABC.Gọi M là trung điểm cạnh AB,N là 1 điểm cạnh AC sao cho NC=2NA và I là trung điểm đoạn MN.CM: vectơ BC+vectơ NM=vectơ BM+vectơ NC.hãy biểu diễn vectơ AI Theo hai vectơ AB và vectơ AC.giúp mk với ạ help me mình học kém toán
Vectơ n → =(-1;-4;1) là một vectơ pháp tuyến của mặt phẳng nào dưới đây?
A. x + 4y - z + 3 = 0
B. x - 4y + z + 1 = 0
C. x + 4y + z = 0
D. x + y - 4z +1 = 0
Đường thẳng d có một vectơ pháp tuyến là n→=(-4,-2). Trong các vectơ sau, vectơ nào là một vectơ chỉ phương của d ?
a. u→=(2,1)
b. u→=(2,4)
c. u→=(-2, 1)
d. u→=(-2, 4)
Cho tam giác ABC lấy M, N ,P sao cho vectơ MB = 3 vectơ MC ; vectơ Na + 3 vectơ NC = vectơ 0 và vectơ P A + vectơ PB = vectơ 0
a) tính vectơ PM và vectơ PN theo vectơ AB ; vectơ AC
b) Chứng minh rằng M, N,P thẳng hàng
cho ∆ABC.Gọi M,N lần lượt là 2 điểm thoả mãn
vectơ MA=2 vectơ MB
và 3 vectơ NA+ 2 vectơ NC =vectơ 0.
phân tích vectơ MN theo 2 vectơ AB và AC
Giúp mik vs mn ơi
Lời giải:
Có: $\overrightarrow{MA}=2\overrightarrow{MB}=2(\overrightarrow{MA}+\overrightarrow{AB})$
$\Rightarrow \overrightarrow{MA}=-2\overrightarrow{AB}(1)$
$3\overrightarrow{NA}+2\overrightarrow{NC}=\overrightarrow{0}$
$\Leftrightarrow 3\overrightarrow{NA}+2(\overrightarrow{NA}+\overrightarrow{AC})=\overrightarrow{0}$
$\Leftrightarrow 5\overrightarrow{NA}+2\overrightarrow{AC}=\overrightarrow{0}$
$\Leftrightarrow \overrightarrow{NA}=-\frac{2}{5}\overrightarrow{AC}(2)$
Từ $(1);(2)$ suy ra:
$\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AN}$
$=\overrightarrow{MA}-\overrightarrow{NA}=-2\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}$
4. Trong mặt phẳng toạ độ Oxy cho đg thẳng d có pt 2x -y +1=0. Để phép tịnh tiến theo vectơ v biến d thành chính nó thì vectơ v phải là vectơ nào ? Tại sao?
A. Vectơ v = (2;1)
B. Vectơ v = (2;-1)
C. Vectơ v= (1;2)
D. Vectơ v (-1;2)
15. Trong mặt phẳng với hệ trục toạ độ Oxy , cho các điểm A(-2;1) và B(2;-3). Phép tịnh tiến theo vectơ v biến điểm B thành điểm A . Hãy tìm toạ độ của vectơ u.
4.
Bạn nhớ tính chất sau: phép tịnh tiến theo vecto $\overrightarrow{v}$ biến đường thẳng thành chính nó khi và chỉ khi $\overrightarrow{v}$ là vecto chỉ phương của đường thẳng $d$.
Dễ thấy $\overrightarrow{u_d}=(1,2)$ nên $\overrightarrow{v}=(1,2)$. Đáp án C.
Giải theo cách thuần thông thường:
Gọi vecto cần tìm là $\overrightarrow{v}=(a,b)$
Gọi $M(x,2x+1)$ là điểm thuộc đường thẳng $d$
$M'(x',y')=T_{\overrightarrow{v}}(M)\in (d)$
\(\Rightarrow \left\{\begin{matrix} x'=x+a; y'=2x+1+b\\ 2x'-y'+1=0\end{matrix}\right.\)
\(\Rightarrow 2(x+a)-(2x+1+b)+1=0\)
\(\Leftrightarrow 2a=b\)
Vậy $\overrightarrow{v}=(1,2)$
15.
Gọi $\overrightarrow{v}=(a,b)$
Theo bài ra ta có:
$T_{\overrightarrow{v}}(B)=A$
$\Leftrightarrow \overrightarrow{BA}=\overrightarrow{v}$
$\Leftrightarrow (-4,4)=\overrightarrow{v}$
Một vectơ chuyển động tròn đều . Đặt vectơ m là Vectơ vận tốc của chất điểm tại vị trí m làm chuẩn sau 1/3 vòng thì chất điểm có Vectơ vận tốc hợp với vectơ m một góc bao nhiêu
Cho 4 điểm phân biệt m n p q và vectơ V = vectơ MN + vectơ PM + vectơ NQ khi đó vectơ V =
\(\overrightarrow{V}=\overrightarrow{MN}+\overrightarrow{PM}+\overrightarrow{NQ}\)
\(=\overrightarrow{PM}+\overrightarrow{MN}+\overrightarrow{NQ}\)
\(=\overrightarrow{PM}+\overrightarrow{MQ}=\overrightarrow{PQ}\)