\(\overrightarrow{V}=\overrightarrow{MN}+\overrightarrow{PM}+\overrightarrow{NQ}\)
\(=\overrightarrow{PM}+\overrightarrow{MN}+\overrightarrow{NQ}\)
\(=\overrightarrow{PM}+\overrightarrow{MQ}=\overrightarrow{PQ}\)
\(\overrightarrow{V}=\overrightarrow{MN}+\overrightarrow{PM}+\overrightarrow{NQ}\)
\(=\overrightarrow{PM}+\overrightarrow{MN}+\overrightarrow{NQ}\)
\(=\overrightarrow{PM}+\overrightarrow{MQ}=\overrightarrow{PQ}\)
Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AB và CD. Nối AF và CE, 2 đường này cắt đường chéo BD lần lượt tại M và N. Chứng minh vectơ DM = vectơ MN = vectơ NB.
Cho tam giác ABC. I là điểm trên cạnh AC sao cho 4 lần vectơ CI + vectơ AC = vectơ 0 và điểm J thỏa mãn vectơ BJ=1/2 vectơAC -2/3vectơ AB. chứng minh 3 điểm I,J,B thẳng hàng
Cho tam giác DEF. Gọi M,N,P lần lượt là trung điểm DE,EF, FD a/ chứng minh các vectơ EP=EM+EN b/ vectơ ME+NF+PD=0 c/ vectơ DN+EP+FM=0
Cho hình bình hành ABCD. Hai điểm M và N lần lượt là trung điểm của BC và AD. Xác định tổng của 2 vectơ NC và vectơ AD
Cho tam giác ABC đều cạnh 3a . a, Tính| Vectơ AB + Vectơ AC | b, H là trung điểm của BC .Tính|Vectơ CA - Vectơ HC |
Cho hình bình hành ABCD . Gọi M,N là các điểm thỏa vectơ AM =2/3 AD , vectơ = 1/4BC . Gọi G là trọng tâm của tam giác CMN . Phân tích AG theo AB ,AD
Cho hình thang ABCD ( AB // CD ) và điểm M nằm trong hình thang ABCD. Kẻ các hình bình hành MAED, MBFC. Chứng minh hai vectơ EF và vectơ AB cùng phương.
Bài 1 : Cho tam giác ABC đều cạnh a. Gọi M là trung điểm của BC. Xác định và tính theo a độ dài vectơ BM + vectơ BA
tam giác ABC đều cạnh a,dựng hình vuông BCMN.Gọi G là trọng tâm tam giác ABC.Tính theo a độ dài vectơ u=vectơ GA+vectơ GB+vectơ GM+vecto GN