Cho hình thang MNPQ với đáy lớn là PQ, đáy nhỏ là MN. E là trung điểm MP CMR: các vectơ EM+EN+EP+EQ=PN+MQ
Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AB và CD. Nối AF và CE, 2 đường này cắt đường chéo BD lần lượt tại M và N. Chứng minh vectơ DM = vectơ MN = vectơ NB.
Cho tam giác ABC. I là điểm trên cạnh AC sao cho 4 lần vectơ CI + vectơ AC = vectơ 0 và điểm J thỏa mãn vectơ BJ=1/2 vectơAC -2/3vectơ AB. chứng minh 3 điểm I,J,B thẳng hàng
Cho tam giác ABC có trọng tâm G, gọi M, N, P lần lượt là trung điểm của BC, CA, AB |
a) Tìm các vectơ bằng vecto MN b) Dựng điểm I sao cho vecto AG bằng vecto PI
c) Tứ giác BGMI là hình gì ?
Cho tam giác ABC có M, N, P lần lượt là trung điểm của AB, BC, CA. Tính tổng các vectơ
AM + BN + CP
Bài 1 : Cho tam giác ABC đều cạnh a. Gọi M là trung điểm của BC. Xác định và tính theo a độ dài vectơ BM + vectơ BA
Cho tam giác ABC đều cạnh 3a . a, Tính| Vectơ AB + Vectơ AC | b, H là trung điểm của BC .Tính|Vectơ CA - Vectơ HC |
Cho hình bình hành ABCD . Gọi M,N là các điểm thỏa vectơ AM =2/3 AD , vectơ = 1/4BC . Gọi G là trọng tâm của tam giác CMN . Phân tích AG theo AB ,AD
Cho hình bình hành ABCD. Hai điểm M và N lần lượt là trung điểm của BC và AD. Xác định tổng của 2 vectơ NC và vectơ AD