Cho đa thức sau f ( x ) = x 2 + 5 x - 6 . Các nghiệm của đa thức đã cho là:
A. 2 và 3
B. 1 và - 6
C. -3 và -6
D. -3 và 8
Cho đa thức f(x) = x4 +2.x3 -2.x2 -6.x + 5
Trong các số sau 1 ; -1 ; 5 ; -5 số nào là nghiệm của đa thức f(x)
thằng tó này hay đăng linh tinh thế lắm. ko trả lời thì cút
trùi ui e ms hok lp 6 sao câu hỏi nào cj đăng e cux common để cj mừng hụt z
Bài 6: Cho đa thức f(x)= \(x^4+2x^3-2x^2-6x+5\)
Trong các số sau: 1; -1; 2; -2 số nào là nghiệm của đa thức f(x)? vì sao
\(f\left(1\right)=1^4+2\cdot1^3-2\cdot1^2-6\cdot1+5\)
\(=1+2-2-6+5=0\)
=>x=1 là nghiệm
\(f\left(-1\right)=\left(-1\right)^4+2\cdot\left(-1\right)^3-2\cdot\left(-1\right)^2-6\cdot\left(-1\right)+5\)
\(=1-2-2+6+5=12-4=8\)
=>x=-1 không là nghiệm
\(f\left(2\right)=2^4+2\cdot2^3-2\cdot2^2-6\cdot2+5\)
\(=16+16-8-12+5=8+4+5>0\)
Do đó: x=2 không là nghiệm
\(f\left(-2\right)=\left(-2\right)^4+2\cdot\left(-2\right)^3-2\cdot\left(-2\right)^2-6\cdot\left(-2\right)+5\)
\(=16-16-2\cdot4+12+5=17-8=9>0\)
Do đó: x=-2 không là nghiệm
\(\text{Thay x=1 vào biểu thức trên,ta được:}\)
\(f\left(x\right)=1^4+2.1^3-2.1^2-6.1+5\)
\(f\left(x\right)=1+2-2-6+5\)
\(f\left(x\right)=0\)
\(\text{Vậy x=1 là nghiệm của đa thức f(x)}\)
\(\text{Thay x=-1 vào biểu thức trên,ta được:}\)
\(f\left(x\right)=\left(-1\right)^4+2.\left(-1\right)^3-2.\left(-1\right)^2-6.\left(-1\right)+5\)
\(f\left(x\right)=1+\left(-2\right)-2-\left(-6\right)+5\)
\(f\left(x\right)=8\)
\(\text{Vậy x=-1 không phải là nghiệm của đa thức f(x)}\)
\(\text{Thay x=2 vào biểu thức trên,ta được:}\)
\(f\left(x\right)=2^4+2.2^3-2.2^2-6.2+5\)
\(f\left(x\right)=16+16-8-12+5\)
\(f\left(x\right)=17\)
\(\text{Vậy x=2 không phải là nghiệm của đa thức f(x)}\)
\(\text{Thay x=-2 vào biểu thức trên,ta được:}\)
\(f\left(x\right)=\left(-2\right)^4+2.\left(-2\right)^3-2.\left(-2\right)^2-6.\left(-2\right)+5\)
\(f\left(x\right)=16+\left(-16\right)-8-\left(-12\right)+5\)
\(f\left(x\right)=9\)
\(\text{Vậy x=-2 không phải là nghiệm của đa thức f(x)}\)
Bài 5:
Cho 2 đa thức sau:
f(x)=(x-1)(x+2)
g(x)=x3+ax2+bx+2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
f(x)=0
<=>(x-1)(x+2)=0
<=>x-1=0 hoặc x+2=0
<=>x=1 hoặc x=-2
tiếp theo thay vô làm
Bài 1 : Cho đa thức f(x) = x4 + 2x3 – 2x2 – 6x + 5 Trong các số sau : 1; –1; 2; –2 số nào là nghiệm của đa thức f(x)
a) Cho đa thức f(x) = x^100 + x^99 + ... + x^2 + x + 1 . tìm dư của phép chia đa thức f(x) cho đa thức x^2 -1
b) Tìm đa thức f(x) biết rằng f(x) chia cho x-2 thì dư 2, f(x) chia cho x-3 thì dư 7 , f(x) chia cho x^5 - 5x + 6 thì đc thương là 1 - x^2 và còn dư
Huyền hỏi 2 bài liên tiếp à viết nhanh thế
Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?
biết đa thức f(x) chia cho đa thức x-2 dư 7 , chia cho đa thức x2+1 dư 3x+5 . Tìm dư trong phép chia đa thức f(x) cho đa thức (x2+1)(x-2)
đơn giản thì trả lời đi , fly color à bạn :)))
Cho đa thức f(x)=x^3+x^2-2
Số dư trong phép chia đa thức f(x) cho x+1 là f(-1) =-2
Số dư trong phép chia đa thức f(x) cho x-2 là f(2) =10
Số dư trong phép chia đa thức f(x) cho x-1 là f(1)=0,nghĩa la f(x) chia hết cho (x-1)
Em háy chọn 1 đa thức f(x) cho (x-a) với f(a) bằng cách cho a nhận các giá trị bất kì để cùng kiểm tra kết quả sau :
"Số dư trong phép chia đa thức f(x) cho (x-a) đúng bằng f(a)’’
Cho mình xin cách làm đi
Nó là định lí Bézout đấy bạn ^^
Định lí Bézout : Phần dư trong phép chia đa thức f(x) cho nhị thức g(x) = x - a là một hằng số bằng f(a)
Chứng minh : Theo định lí cơ bản ta có : f(x) = ( x - a ).P(x) + R(x) (1)
Ở đây, g(x) = x - a có bậc là bậc nhất mà bậc của dư R(x) phải nhỏ hơn bậc của g(x), vậy R(x) phải là một hằng số, thay x = a trong đẳng thức (1) ta có : f(a) = ( a - a ).P(a) + R => R = f(a)
Hệ quả : Nếu a là nghiệm của f(x) thì f(x) chia hết cho x - a
Ta dùng hệ quả của định lí Bézout để phân tích đa thức thành nhân tử khi đã biết một nghiệm
Biết đa thức f(x) chia cho x-3 dư 7, chia cho x-2 dư 5. Tìm đa thức dư trong phép chia đa thức f(x) cho x^2-5x+6
\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
Giả sử \(f\left(x\right)\) chia cho \(x^2-5x+6\) được thương là\(Q\left(x\right)\) và dư \(ax+b\)
=> \(f\left(x\right)=Q\left(x\right).\left(x-2\right)\left(x-3\right)+ax+b\)
Có \(f\left(x\right)\) chia cho x - 3 dư 7 ; chia cho x - 2 dư 5
=> \(\left\{{}\begin{matrix}f\left(3\right)=7\\f\left(2\right)=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3a+b=7\\2a+b=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
=> \(f\left(x\right)\)chia cho \(x^2-5x+6\) dư 2x + 1
Giả sử đa thức bị chia là m (x)
Gia sử thương là : q( x )
Vì đa thức chia có bậc là 2 , Suy ra thương có bậc là 1
Suy ra , ta có : m( x ) =( x2 - 5x + 6 ) q( x ) = ax + b
Đi tìm X
x2 - 5x + 6 = 0
x2 - 2x - 3x + 6 = 0
x( x - 2) - 3(x - 2) = 0
( x - 2)( x - 3) = 0
Vậy x = 2 hoặc x = 3
Ta có giả thiết f( x ) chia cho x - 2 dư 5 ,từ đó ta được :
f( 2 ) = 5
-> 2a + b = 5 ( 1)
Ta lại có giả thiết f( x ) chia cho x - 3 dư 7 ,Từ đó ta được :
f( 3 ) = 7
-> 3a + b = 7 ( 2)
Từ ( 1 và 2) suy ra : a = 2 ; b = 1
Suy ra : f( x ) = ( x2 - 5x + 6 ) Thay số q( x ) = 2x + 1
Vậy dư là 2x +1
Cho đa thức F(x) = X4 + 2x3 - 2x2- 6x + 5 trong các số sau 1;-1;2;-2 số nào là nghiệm của đa thức F(x). giúp mình với
Thay x = 1 vào đa thứ F(x) ta cso
F(x) = 14 + 2.13 - 2.12- 6.1 + 5
F (x) = 0
Vậy 1 không phải là nghiệm của đa thức F(x)
Thay x = -1 vào đa thức F(x) ta có
F(x) = -14 + 2.(-13) - 2.(-12)- 6. (-1) + 5
F(x) = 8
Vậy -1 không phải là nghiệm của đa thức F(x)
Thay x = 2 vào đa thức F(x) ta có
F(x) = 24 + 2.23 - 2.22- 6.2 + 5
F(x) = 17
Vậy 2 không phải là nghiệm của đa thức F(x)
Thay x = 12 vào đa thức F(x) ta có
F(x) = -24 + 2.(-23) - 2.(-22)- 6.(-2) + 5
F(x)= -7
Vậy -2 không phải là nghiệm của đa thức F(x)
Cho hai đa thức sau: F(x) =(x-1)(x+2) G(x) =x+ax^2+bx+2 Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
F(x)=0
=>x=-2 hoặc x=1
Để F(x) và G(x) có chung tập nghiệm thì:
-2+4a-2b+2=0 và 1+a+b+2=0
=>4a-2b=0 và a+b=-3
=>a=-1 và b=-2