d 1 : x - 1 2 = y + 2 - 3 = z - 5 4 và d 2 : x = 7 + 3 t y = 2 + 2 t z = 1 - 2 t
Viết chương trình của ( α ).
(x+1/1-x)-(1-x/1+x)-(4x2/x^2-1):(4x^2-4/x^2-2x+1)
a. rút gọn .
b. tìm x để D <1
c. tìm x để |D|=D
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn và hỗ trợ tốt hơn nhé
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
cho D =[1/x-1 - 2/x3-x2+x-1] : (1-x/x2+1)
a) rut gon D
b) chung minh rang D>0 voi moi gia tri cua x de D co nghia
1. Cho d: y = (\(^{m^2}\) + 2m)x + m + 1 . Tìm m để:
a, d // d1: y = (m + 6)x - 2
b, d ⊥ d2: y = \(\dfrac{-1}{3}\)x - 3
c, d ≡ d3: y = -\(^{m^2}\).x + 1
2. Tìm d // d1: y = \(\dfrac{-1}{2}\)x + 1 và d đi qua giao điểm của d1: y = 4x - 3 và d2: y = -x + 1
Bài 1:
b: Để (d) vuông góc với (d2) thì \(\left(m^2+2m\right)\cdot\dfrac{-1}{3}=-1\)
\(\Leftrightarrow m^2+2m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\)
1. Kết quả (x+1/2)^2 =
A. x^2+2x+1/4 B. x^2-x+1/4 C. x^2+x+1/4 D. x^2+x+0,2-1/3x)(0,21/2
2. Kết quả (x^2+2y)^2 bằng
A. 1/4+4y^2 B. 1/4+4y+4y^2 C. 1/4+2y+4y^2 D. 1/4+2y+2y^2
3. Kết quả phép tính (1/2x-0,5)^2 là
A. 1/2x^2-1/2x+0,25 B. 1/4x^2-0,25 C. 1/2x^2-0,25x+0,5 D. 1/4x^2-0,5x+0,25
4. Kết quả (0,2-1/3x)(0,2+1/3x)
A. 1/2x^2-1/2x+0,25 B. 1/4x^2-0,25 C. 1/2x^2-0,5x+2,5 D. Tất cả đều sai
5. Viết dưới dạng bình phương tổng x^2+2x+1 là:
A. (x+2)^2 B. (x+1)^2 C. (2x+1)^2 D. Tất cả đều sai
6. Kết quả (100a+5)^2 bằng
A. 100a^2+100a+25 B. 100a+100a+25 C. 100a^2-100a+25 D. 100a-100a+25
7. Kết quả thực hiện phép tính (2x-1/3)^2
A. 8x^3-1/27 B. 8x^2-2x^2+2/3x-1/27
8. Kết quả (1/2x-3)^2 =
9. Với x=6 giá trị của đa thứcx^3+12x^2+48x+64 là
A. 900 B. 1000 C. 3000 D. Khác
10. Khi phân tích đa thức x^2-x kết quả là
A. x^2-x=x+1 B. x^2-x=x(x+1) C. x^2-x=x D. x^2-x=x^2(x+1)
1. Kết quả (x+1/2)^2 =
A. x^2+2x+1/4
B. x^2-x+1/4
C. x^2+x+1/4
D. x^2+x+0,2-1/3x)(0,21/2
2. Kết quả (x^2+2y)^2 bằng
A. 1/4+4y^2
B. 1/4+4y+4y^2
C. 1/4+2y+4y^2
D. 1/4+2y+2y^2
3. Kết quả phép tính (1/2x-0,5)^2 là
A. 1/2x^2-1/2x+0,25
B. 1/4x^2-0,25
C. 1/2x^2-0,25x+0,5
D. 1/4x^2-0,5x+0,25
4. Kết quả (0,2-1/3x)(0,2+1/3x)
A. 1/2x^2-1/2x+0,25
B. 1/4x^2-0,25
C. 1/2x^2-0,5x+2,5
D. Tất cả đều sai
5. Viết dưới dạng bình phương tổng x^2+2x+1 là:
A. (x+2)^2
B. (x+1)^2
C. (2x+1)^2
D. Tất cả đều sai
6. Kết quả (100a+5)^2 bằng
A. 100a^2+100a+25
B. 100a+100a+25
C. 100a^2-100a+25
D. 100a-100a+25
7. Kết quả thực hiện phép tính (2x-1/3)^2
A. 8x^3-1/27
B. 8x^2-2x^2+2/3x-1/27
8. Kết quả (1/2x-3)^2 = \(\frac{1}{4}x^2-3x+9\)
9. Với x=6 giá trị của đa thứcx^3+12x^2+48x+64 là
A. 900
B. 1000
C. 3000
D. Khác
10. Khi phân tích đa thức x^2-x kết quả là
A. x^2-x=x+1
B. x^2-x=x(x-1)
C. x^2-x=x
D. x^2-x=x^2(x+1)
1.cho biểu thức
|D=(1/x-1-x/1-x^3-x^2+x+1/x+1):2x+1/x^2+x+1)
a)rút gọn D
b)tính gtri của D
c)tìm gtri nguyên của x để biểu thức D có gtri nguyên
Cho biểu thức D=\(\dfrac{1}{2\sqrt{X}-2}-\dfrac{1}{2\sqrt{X}+2}+\dfrac{\sqrt{X}}{1-X}\)
rút gọn D
ĐKXĐ: \(x\ge0;x\ne1\)
\(D=\dfrac{1}{2\left(\sqrt{x}-1\right)}-\dfrac{1}{2\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\dfrac{1}{\sqrt{x}+1}\)
Tìm giá trị lớn nhất (nhỏ nhất) của biểu thức:
a) A = (x - 1)^2 +1; b) B = x^2 + x^4 - 1/2;
c) C = - (x - 2)^4 -|y - l| + l; d) D = 2/(x-1)^2+1
\(A=\left(x-1\right)^2+1.\\ \left(x-1\right)^2\ge0\forall x\in R.\\ 1>0.\\ \Rightarrow\left(x-1\right)^2+1\ge1\forall x\in R.\\ \Rightarrow A\ge1.\\ \Rightarrow A_{min}=1.\)
\(B=x^2+x^4-\dfrac{1}{2}.\\ x^2+x^4\ge0\forall x\in R.\\ \Leftrightarrow x^2+x^4-\dfrac{1}{2}\ge\dfrac{-1}{2}\forall x\in R.\\ \Rightarrow B\ge\dfrac{-1}{2}.\\ \Rightarrow B_{min}=\dfrac{-1}{2}.\)
\(D=\dfrac{2}{\left(x-1\right)^2}+1.\\ \left(x-1\right)^2\ge0\forall x\in R.\\ \Leftrightarrow\dfrac{2}{\left(x-1\right)^2}\ge0.\\ \Leftrightarrow\dfrac{2}{\left(x-1\right)^2}+1\ge1\forall x\in R.\\ \Rightarrow D\ge1.\\ \Rightarrow D_{min}=1.\)
1. Tìm Min hoặc Max :
a) A = | x + 1| + 2016
b) B = 2017 - | 2x - 1/3|
c) C = | x + 1| + | y + 2| + 2016
d) D = -| x + 1/2| - | y - 1| +10
2. Tìm x, biết:
a) ( x+1)( y + 2) = 0
b) ( x + 2)( x - 3) > 0
c) ( x + 1/2) = 3
d) | x + 1| < 2016
e) | x - 1/2| > 5
Câu 1:
a)A=|x+1|+2016
Vì |x+1|\(\ge\)0
Suy ra:|x+1|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0
x=-1
Vậy MinA=2016 khi x=-1
b)B=2017-|2x-\(\frac{1}{3}\)|
Vì -|2x-\(\frac{1}{3}\)|\(\le\)0
Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017
Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)
\(2x=\frac{1}{3}\)
\(x=\frac{1}{6}\)
Vậy Max B=2017 khi \(x=\frac{1}{6}\)
c)C=|x+1|+|y+2|+2016
Vì |x+1|\(\ge\)0
|y+2|\(\ge\)0
Suy ra:|x+1|+|y+2|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0;x=-1
y+2=0;y=-2
Vậy MinC=2016 khi x=-1;y=-1
d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10
=10-|x+\(\frac{1}{2}\)|-|y-1|
Vì -|x+\(\frac{1}{2}\)|\(\le\)0
-|y-1| \(\le\)0
Suy ra: 10-|x+\(\frac{1}{2}\)|-|y-1| \(\le\)10
Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)
y-1=0;y=1
Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1
Bài 1:
a)Ta thấy: \(\left|x+1\right|\ge0\)
\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)
\(\Rightarrow A\ge2016\)
Dấu = khi x=-1
Vậy MinA=2016 khi x=-1
b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)
\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)
\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)
\(\Rightarrow B\le2017\)
Dấu = khi x=1/6
Vậy Bmin=2017 khi x=1/6
c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)
\(\Rightarrow D\ge2016\)
Dấu = khi x=-1 và y=-2
Vậy MinD=2016 khi x=-1 và y=-2
d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)
\(\Rightarrow D\le10\)
Dấu = khi x=-1/2 và y=1
Vậy MaxD=10 khi x=-1/2 và y=1
a) ( x + 1 )( y + 2 ) = 0
\(\Rightarrow\) x + 1 = 0 hoặc y + 2 = 0
+) x + 1 = 0 \(\Rightarrow\) x = -1
+) y + 2 = 0 \(\Rightarrow\) y = -2
Vậy x = -1; y = -2