Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Huy Khoa
Xem chi tiết
nguyễn thị hương giang
1 tháng 11 2021 lúc 14:28

\(A=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4\left(y^2-1\right)\)

   \(=\left(x-y-x-y\right)^2-4\left(y^2-1\right)\)

   \(=\left(-2y\right)^2-4y^2+4=4\)

Phạm Bích Ngọc
Xem chi tiết
pham trung thanh
28 tháng 9 2017 lúc 10:29

\(\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)

\(=\left(x^4-y^4\right)\left(x^4+y^4\right)\)

\(=x^8-y^8\)

Mai Anh
Xem chi tiết
pham trung thanh
3 tháng 12 2017 lúc 19:49

\(\left(x+y\right)^2-\left(x-y\right)^2-4\left(x-1\right)y\)

\(=x^2+2xy+y^2-x^2+2xy-y^2-4xy+4y\)

\(=4y\)

Sâm Rùa trần
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 10 2021 lúc 7:05

\(a,P=x^2-16-x^2+8x-16=8x-32\\ b,=3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\\ =2y^2-10xy=2\cdot9-10\left(-3\right)\cdot2=78\)

Karata Kuro
Xem chi tiết
Bùi Phương Linh
Xem chi tiết
Akai Haruma
10 tháng 10 2021 lúc 18:38

Lời giải:

$x(x+y)-y(x+y)+x^2+y^2=(x-y)(x+y)+x^2+y^2$

$=x^2-y^2+x^2+y^2=2x^2$

Linh Nguyễn
Xem chi tiết
Thanh Ngân
13 tháng 6 2019 lúc 13:06

a/\(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)

\(=4x^2-4x+1-8x^2+24x-18+4\)

\(=-4x^2+20x-13\)

b/ \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)

\(=2\left(x^2-y^2\right)+x^2+2xy+y^2+x^2-2xy+y^2\)

\(=2x^2-2y^2+2x^2+2y^2\)

\(=4x^2\)

chúc bạn học tốt

Nguyễn Đan Xuân Nghi
Xem chi tiết
HT.Phong (9A5)
15 tháng 7 2023 lúc 8:29

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{1}{y-x}+\dfrac{1}{x+2\sqrt{x}\sqrt{y}+y}\right)-2x\) (với \(x\ne y,x,y\ge0\))

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{1}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)}+\dfrac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{\sqrt{y}+\sqrt{x}}{\left(\sqrt{y}+\sqrt{x}\right)^2\left(\sqrt{y}-\sqrt{x}\right)}+\dfrac{\sqrt{y}-\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{y}-\sqrt{x}\right)}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{\sqrt{y}+\sqrt{x}+\sqrt{y}-\sqrt{x}}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)^2}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{2\sqrt{y}}{\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}\cdot\dfrac{\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}{2\sqrt{y}}-2x\)

\(P=\dfrac{4\sqrt{xy}\cdot\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right)\cdot2\sqrt{y}}-2x\)

\(P=\dfrac{4\sqrt{xy}\cdot\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\cdot2\sqrt{y}}-2x\)

\(P=\dfrac{2\sqrt{x}\left(y-x\right)}{\sqrt{x}-\sqrt{y}}-2x\)

\(P=\dfrac{2\sqrt{x}\left(y-x\right)-2x\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(P=\dfrac{2y\sqrt{x}-2x\sqrt{x}-2x\sqrt{x}+2x\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

\(P=\dfrac{2y\sqrt{x}-4x\sqrt{x}+2x\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 5 2019 lúc 6:25

x + y 2 + x - y 2

= x 2  + 2xy + y 2  +  x 2  – 2xy +  y 2

= 2 x 2  + 2 y 2

Nguyễn Ngọc Ánh
Xem chi tiết
dâu cute
21 tháng 8 2023 lúc 8:19

a) A = [(2x + y) - (2x - y)] . [(2x +y) + (2x - y)]

b) B = [(x - 2y) - 2y]2

Hà Quang Minh
21 tháng 8 2023 lúc 8:20

\(a,A=\left(2x+y\right)^2-\left(2x-y\right)^2\\ =\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\\ =2y\cdot4x\\ =8xy\\ b,B=\left(x-2y\right)^2-4y\left(x-2y\right)+4y^2\\ =x^2-4xy+4y^2-4xy+8y^2+4y^2\\ =x^2+16y^2-8xy\\ =\left(x-4y\right)^2\)

Toru
21 tháng 8 2023 lúc 8:21

\(a,A=\left(2x+y\right)^2-\left(2x-y\right)^2\)

\(=\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\)

\(=2y.4x=8xy\)

Vậy \(A=8xy\)

\(----------\)

\(b,B=\left(x-2y\right)^2-4\left(x-2y\right)y+4y^2\)

\(=\left(x-2y\right)^2-2.\left(x-2y\right).2y+\left(2y\right)^2\)

\(=\left(x-2y-2y\right)^2\)

\(=\left(x-4y\right)^2\)

Vậy \(B=\left(x-4y\right)^2\)