Cho
A=1+3+3^2+3^3+..+3^2016
B= 3^2015:2
Tính B-A
a^3+b^3+c^3=1 và (a+b)/c+(a+c)/b+(b+c)/a=-2
tính 1/a+1/b+1/c
** Bạn lưu ý lần sau viết đề bằng công thức toán để được hỗ trợ tốt hơn.
Lời giải:
$\frac{a+b}{c}+\frac{a+c}{b}+\frac{b+c}{a}=-2$
$\Leftrightarrow \frac{a+b}{c}+1+\frac{a+c}{b}+1+\frac{b+c}{a}=0$
$\Leftrightarrow (a+b+c)(\frac{1}{c}+\frac{1}{b})+\frac{b+c}{a}=0$
$\Leftrightarrow \frac{(a+b+c)(b+c)}{bc}+\frac{b+c}{a}=0$
$\Leftrightarrow (b+c)(\frac{a+b+c}{bc}+\frac{1}{a})=0$
$\Leftrightarrow (b+c).\frac{a(a+b+c)+bc}{abc}=0$
$\Leftrightarrow \frac{(b+c)(a+b)(a+c)}{abc}=0$
$\Rightarrow (a+b)(b+c)(c+a)=0$
$\Rightarrow a+b=0$ hoặc $b+c=0$ hoặc $c+a=0$
Không mất tổng quát giả sử $a+b=0\Rightarrow a=-b$
$1=a^3+b^3+c^3=(-b)^3+b^3+c^3=c^3\Rightarrow c=1$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{-1}{b}+\frac{1}{b}+\frac{1}{1}=1$
Vậy..........
Tìm x: a) (x+1)^3-x(x-2)^+x-1=0
b) (x-1)^3 - (x+3)(x^2-3x+9)+3(x^2-4)=2
Tính: (căn 2 x - y^2)
a: (x+1)^3-x(x-2)^2+x-1=0
=>x^3+3x^2+3x+1-x(x^2-4x+4)+x-1=0
=>x^3+3x^2+4x-x^3+4x^2-4x=0
=>7x^2=0
=>x=0
b: =>x^3-3x^2+3x-1-x^3-27+3x^2-12=2
=>3x=2+1+27+12=39+3=42
=>x=14
Cho A = ab^2c .(-1/2bc^2)+(3/2abc).(-bc)^2
TÍnh giá trị của A tại a=b=c=-1
Vì a=b=c nên:
A=ab^2c.(-1/2bc^2)+(3/2abc).(-bc)^2
A=a^4.(-1/2a^3)+(3/2a^3).a^4
A=a^4.(-1/2a^3+3/2abc)
A=a^4.a^3=a^7
Thay a=1 vào A ta có: A=(-1)^7=-1
Ta có: \(A=ab^2c\cdot\left(-\dfrac{1}{2}bc^2\right)+\dfrac{3}{2}abc\cdot\left(-bc\right)^2\)
\(=\dfrac{-1}{2}ab^3c^3+\dfrac{3}{2}abc\cdot b^2c^2\)
\(=\dfrac{-1}{2}ab^3c^3+\dfrac{3}{2}ab^3c^3\)
\(=ab^3c^3\)
Thay a=-1; b=-1; c=-1 vào A, ta được:
\(A=-1\cdot\left(-1\right)^3\cdot\left(-1\right)^3=-1\)
Vì a=b=c nên:
A=ab^2c.(-1/2bc^2)+(3/2abc).(-bc)^2
A=a^4.(-1/2a^3)+(3/2a^3).a^4
A=a^4.(-1/2a^3+3/2abc)
A=a^4.a^3=a^7
Thay a=1 vào A ta có: A=(-1)^7=-1
Tính \(A^5+B^5\) biết A + B = 3 và AB = 2
Tính \(A^6+B^6\) biết A + B = 2 và AB = 1
\(A^2+B^2=\left(A+B\right)^2-2AB=5\)
\(A^3+B^3=\left(A+B\right)^3-3AB\left(A+B\right)=9\)
\(A^5+B^5=\left(A^2+B^2\right)\left(A^3+B^3\right)-\left(AB\right)^2\left(A+B\right)=5.9-2^2.3=...\)
B.
\(A^2+B^2=\left(A+B\right)^2-2AB=2\)
\(A^6+B^6=\left(A^2\right)^3+\left(B^2\right)^3=\left(A^2+B^2\right)^3-3\left(AB\right)^2\left(A^2+B^2\right)=2^3-3.1^2.2=...\)
Ta có: \(A^2+B^2=\left(A+B\right)^2-2AB=3^2-2.2=5\)
\(A^5+B^5=\left(A^3+B^3\right)\left(A^2+B^2\right)-A^2B^2\left(A+B\right)=\left(A+B\right)\left(A^2-AB+B^2\right)\left(A^2+B^2\right)-A^2B^2\left(A+B\right)=3\left(5-2\right).5-2^2.3=33\)
Choa,b, c là độ dài 3 cạnh 1 tam giác
a.(b-c)^2+b.(c-a)^2+c.(a+b)^2》a^3+b^3+c^3
choA=3^2018-3^2017+3^2016-......-3^3+3^2-3+1
a)rút gọn A
b) tìm chữ số tận cùng của 4*A
ChoA(1 ;2 ;3),B(-4 ;0 ;1) , C(-2 ;3 ;1)vàD(-3 ;2 ;-1). Tọa độ điểm A’ đối xứng với A qua mặt phẳng (BCD) là
A. A ' - 17 47 ; 16 47 ; 19 47
B. A ' - 187 53 ; 160 53 ; 199 53
C. A ' - 187 53 ; 266 53 ; 199 53
D. A ' 17 47 ; - 16 47 ; - 19 47
1. Cho các đơn thức: A= 3/2 * x ^ 3 * y ^ 2 .(-8x^ 5 y^ 6 ), B=2xy^ 5 . (- 7x ^ 7 * y ^ 3)
a) Xác định phần hệ số, phần biến của các đơn thức trên.
b) Tính A + B
2. Cho hai đa thức : A = 2x ^ 2 - 6xy + 4y ^ 2 B = - 5x ^ 2 + 4xy + 7y ^ 2
Tính giá trị của đa thức C = A - B tại x = 1, y = 1/2
3. Cho a, b, c thỏa mãn a + b + c = 0 . Chứng minh rằng : ab + 2bc + 3ca <= 0
Bài 2:
C=A-B
\(=2x^2-6xy+4y^2+5x^2-4xy-7y^2\)
\(=7x^2-10xy-3y^2\)
\(=7\cdot1^2-10\cdot1\cdot\dfrac{1}{2}-3\cdot\dfrac{1}{4}=7-5-\dfrac{3}{4}=2-\dfrac{3}{4}=\dfrac{5}{4}\)
\(ChoA=1+2^2+2^3+2^4+.......+2^{2015}\)
Tìm x, để: \(A+1=2^x\)
\(A=1+2^2+2^3+2^4+...+2^{2015}\)
\(2A=2+2^3+2^4+2^5+...+2^{2016}\)
\(2A-A=\left(2+2^3+2^4+2^5+...+2^{2016}\right)-\left(1+2^2+2^3+2^4+...+2^{2015}\right)\)
\(A=2^{2016}-1\)
A=1+2^2+2^3+2^4+.....+2^2015
=>2A=2+2^3+2^4+2^5+.....+2^2016
=>2A-A=2^2016-1=>A=2^2016-1
Vậy A+1=2^x=2^2016. Hay x=2016
cho a,b,c biết a+b+c=6 và (a-1)^3+(b-2)^3+(c-3)^3=0 tính (a-1)^2015+(b-2)^2015+(c-3)^2015
\(\text{Ta có:}\)
\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3=\)
\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
\(\Leftrightarrow\left(a+b+c-6\right)\left(....\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
\(\Leftrightarrow a=1\text{ hoặc }b=2\text{ hoặc }c=3\)
còn lại ko tính đc bạn ktra lại đề
mk nhầm , chiều mk lm tiếp
Ta có \(\left(a-1\right)+\left(b-2\right)+\left(c-3\right)=6-6=0\)
\(\Rightarrow\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3=3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
<=> a=1 hoặc b=2 hoặc c=3
Xét a=1 => b+c=5
Ta có : \(\left(a-1\right)^{2015}+\left(b-2\right)^{2015}+\left(c-3\right)^{2015}=0+\left(b+c-5\right).A=0\)
Tương tự với b=2,c=3 ta cũng được \(\left(a-1\right)^{2015}+\left(b-2\right)^{2015}+\left(c-3\right)^{2015}=0\)
\(\)