Ta có: \(\left\{{}\begin{matrix}xy=z\\yz=4x\\xz=9y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=z\\y.xy=4x\\x.xy=9y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=z\\xy^2=4x\\x^2y=9y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=z\\xy^2-4x=0\\x^2y-9y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=z\\x\left(y^2-4\right)=0\\y\left(x^2-9\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=z\\\left[{}\begin{matrix}x=0\\y=\pm2\end{matrix}\right.\\\left[{}\begin{matrix}y=0\\x=\pm3\end{matrix}\right.\end{matrix}\right.\)\(\left(\text{*}\right)\)
- Nếu \(x=0\Rightarrow\left\{{}\begin{matrix}9y=xz=0z=0\\z=yz=0y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\z=0\end{matrix}\right.\left(1\right)\)
- Nễu \(y=0\Rightarrow\left\{{}\begin{matrix}4x=yz=0z=0\\z=xy=0x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\z=0\end{matrix}\right.\left(2\right)\)
Từ \(\left(1\right),\left(2\right),\left(\text{*}\right)\Rightarrow\left[{}\begin{matrix}x=y=z=0\\\left\{{}\begin{matrix}x=\pm3\\y=\pm2\\z=xy\end{matrix}\right.\end{matrix}\right.\)
- Nếu \(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\Rightarrow z=3.2=6\)
- Nếu \(\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\Rightarrow z=\left(-3\right).2=-6\)
- Nếu \(\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\Rightarrow z=3.\left(-2\right)=-6\)
- Nếu \(\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\Rightarrow z=\left(-3\right).\left(-2\right)=6\)
Vậy \(\left(x;y;z\right)\in\left\{\left(0;0;0\right);\left(3;2;6\right);\left(-3;2;-6\right);\left(3;-2;-6\right)\left(-3;-2;6\right)\right\}\)