Chọn phép so sánh đúng:
A. 3 16 > 13 16
B. 17 15 > 14 15
C. 20 21 > 1
D. 36 21 < 1
A=\(\dfrac{13^{15}+1}{13^{16}+1}\) và B= \(\dfrac{13^{16}+1}{13^{17}+1}\)
so sánh A và B
\(ta có A=\dfrac{13^{15}+1}{13^{16}+1}=\dfrac{13^{15}}{13^{16}}+1\)=\(\dfrac{1}{13}+1\)
B=\(\dfrac{13^{16}+1}{13^{17}+1}=\dfrac{13^{16}}{13^{17}}+1\)=\(\dfrac{1}{13}+1\)
vậy A=B
\(A=\dfrac{13^{15}+1}{13^{16}+1}vàB=\dfrac{13^{16}+1}{13^{17}+1}\)
ta có
\(\dfrac{13^{16}+1}{13^{17}+1}< 1\Rightarrow\dfrac{13^{16}+1+12}{13^{17}+1+12}=\dfrac{13\left(13^{15}+1\right)}{13\left(13^{16}+1\right)}=\dfrac{13^{15}+1}{13^{16}+1}=A\)
vậy B<A
\(A=\dfrac{13^{15}+1}{13^{16}+1}vàB=\dfrac{13^{16}+1}{13^{17}+1}\)
ta có B<1 nên
\(\dfrac{13^{16}+1}{13^{17}+1}< \dfrac{13^{16}+1+12}{13^{17}+1+12}=\dfrac{13\left(13^{15}+1\right)}{13\left(13^{16}+1\right)}=\dfrac{13^{15}+1}{13^{16}+1}=A\)
Vậy B<A
so sánh A và B biết A= 1315 +1/ 1316+1; B=1316+1/ 1317+1
SO SÁNH A VÀ B
A= 13^16 + 1/13^17+1 VÀ B=13^15 +1 /13^16+1
A=1999^2000 +1 / 1999^1999 +1 VÀ B=1999^1999+1/1999^1998 +1
Cho A = 1 6 + 1 7 + 1 8 + 1 9 + 1 10 B = 1 5 + 1 6 + 1 7 + 1 8 + 1 9
Không thực hiện phép tính , hãy so sánh giá trị của A với B
So sánh : ; \(B=\frac{13^{16}+1}{13^{17}+1}\) \(A=\frac{13^{15}+1}{13^{16}+1}\)
Ta có :
\(13A=\frac{13^{16}+13}{13^{16}+1}=\frac{13^{16}+1+12}{13^{16}+1}=\frac{13^{16}+1}{13^{16}+1}+\frac{12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(13B=\frac{13^{17}+13}{13^{17}+1}=\frac{13^{17}+1+12}{13^{17}+1}=\frac{13^{17}+1}{13^{17}+1}+\frac{12}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Vì \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\) nên \(1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\) hay \(13A>13B\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Phùng Minh Quân ơi tớ cảm ơn nhưng tớ tính máy tính ra A = B ạ ( ko có ý gì đâu )
mình nhầm nha bạn, chỗ nào có chữ "A" thì bạn sửa thành "B", có "B" thì sửa thành "A" giùm mình nha
Kết luận là : Vậy \(A< B\) mới đúng sorry bạn nhìn nhầm
Chúc bạn học tốt ~
Bài 1 : So sánh
\(\left(\frac{1}{10}\right)^{15}\) và \(\left(\frac{3}{10}\right)^{20}\)
Bài 2 : So sánh
A = \(\left(\frac{13^{15}+1}{13^{16}+1}\right)\) và B = \(\left(\frac{13^{16}+1}{13^{17}+1}\right)\)
Bài 1:
Ta có:
\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)
\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)
Lại có:
\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)
\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)
Bài 2:
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Mà \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\Rightarrow A>B\)
A=\(\frac{13^{15}+1}{13^{16}+1}\)
B=\(\frac{13^{16}+1}{13^{17}+1}\)
Hãy so sánh A và B
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=\frac{13^{16}+1+12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=\frac{13^{17}+1+12}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Ta thấy:
\(13^{16}+1< 13^{17}+1\)
\(\Rightarrow\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
hay \(A>B\)
Vậy \(A>B.\)
Ta có: \(\frac{a}{b}< \frac{a+c}{b+c}\)
=> \(B=\frac{13^{16}+1}{13^{17}+1}< \frac{13^{16}+1+12}{13^{17}+1+12}=\frac{13^{16}+13}{13^{17}+13}=\frac{13\left(13^{15}+1\right)}{13\left(13^{16}+1\right)}=\frac{13^{15}+1}{13^{16}+1}=A\)
Vậy: \(A>B\)
So sánh:
\(A=\frac{13^{15}+1}{13^{16}+1};B=\frac{13^{16}+1}{13^{17}+1}\)
Ta có B=13^16+1/13^17+1=13^16+1+12/13^17+1+12
rút gọn ta đc 13^15+1/13^16+1
=> A=B
So sánh
a, A = \(\frac{13^{15}+1}{13^{16}+1}\) và B = \(\frac{13^{16}+1}{13^{17}+1}\)
A=\(\frac{13^{15}+1}{13^{16}+1}\)và B=\(\frac{13^{16}+1}{13^{17}+1}\)Hãy so sánh A và B.
Ta có: \(13A=1+\frac{12}{13^{16}+1};13B=1+\frac{12}{13^{17}+1}\)
Do \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\). Nên \(13A>13B\)
Vậy \(A>B\)